Jia Jia, Coyle Robert C, Richards Dylan J, Berry Christopher Lloyd, Barrs Ryan Walker, Biggs Joshua, James Chou C, Trusk Thomas C, Mei Ying
Bioengineering Department, Clemson University, Clemson, SC 29634, USA.
College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
Acta Biomater. 2016 Nov;45:110-120. doi: 10.1016/j.actbio.2016.09.006. Epub 2016 Sep 7.
Synthetic polymer microarray technology holds remarkable promise to rapidly identify suitable biomaterials for stem cell and tissue engineering applications. However, most of previous microarrayed synthetic polymers do not possess biological ligands (e.g., peptides) to directly engage cell surface receptors. Here, we report the development of peptide-functionalized hydrogel microarrays based on light-assisted copolymerization of poly(ethylene glycol) diacrylates (PEGDA) and methacrylated-peptides. Using solid-phase peptide/organic synthesis, we developed an efficient route to synthesize methacrylated-peptides. In parallel, we identified PEG hydrogels that effectively inhibit non-specific cell adhesion by using PEGDA-700 (M. W.=700) as a monomer. The combined use of these chemistries enables the development of a powerful platform to prepare peptide-functionalized PEG hydrogel microarrays. Additionally, we identified a linker composed of 4 glycines to ensure sufficient exposure of the peptide moieties from hydrogel surfaces. Further, we used this system to directly compare cell adhesion abilities of several related RGD peptides: RGD, RGDS, RGDSG and RGDSP. Finally, we combined the peptide-functionalized hydrogel technology with bioinformatics to construct a library composed of 12 different RGD peptides, including 6 unexplored RGD peptides, to develop culture substrates for hiPSC-derived cardiomyocytes (hiPSC-CMs), a cell type known for poor adhesion to synthetic substrates. 2 out of 6 unexplored RGD peptides showed substantial activities to support hiPSC-CMs. Among them, PMQKMRGDVFSP from laminin β4 subunit was found to support the highest adhesion and sarcomere formation of hiPSC-CMs. With bioinformatics, the peptide-functionalized hydrogel microarrays accelerate the discovery of novel biological ligands to develop biomaterials for stem cell and tissue engineering applications.
In this manuscript, we described the development of a robust approach to prepare peptide-functionalized synthetic hydrogel microarrays. Combined with bioinformatics, this technology enables us to rapidly identify novel biological ligands for the development of the next generation of functional biomaterials for stem cell and tissue engineering applications.
合成聚合物微阵列技术在快速识别适用于干细胞和组织工程应用的生物材料方面具有巨大潜力。然而,大多数先前的微阵列合成聚合物不具备生物配体(如肽)来直接与细胞表面受体结合。在此,我们报告了基于聚(乙二醇)二丙烯酸酯(PEGDA)和甲基丙烯酸化肽的光辅助共聚制备肽功能化水凝胶微阵列的方法。通过固相肽/有机合成,我们开发了一种高效合成甲基丙烯酸化肽的途径。同时,我们通过使用PEGDA - 700(分子量 = 700)作为单体,确定了能有效抑制非特异性细胞黏附的PEG水凝胶。这些化学方法的联合使用为制备肽功能化PEG水凝胶微阵列提供了一个强大的平台。此外,我们确定了由4个甘氨酸组成的连接子,以确保肽部分从水凝胶表面充分暴露。进一步地,我们使用该系统直接比较了几种相关RGD肽(RGD、RGDS、RGDSG和RGDSP)的细胞黏附能力。最后,我们将肽功能化水凝胶技术与生物信息学相结合,构建了一个由12种不同RGD肽组成的文库,其中包括6种未探索的RGD肽,用于开发人诱导多能干细胞衍生心肌细胞(hiPSC - CMs)的培养底物,hiPSC - CMs是一种已知对合成底物黏附性差的细胞类型。6种未探索的RGD肽中有2种对支持hiPSC - CMs具有显著活性。其中,来自层粘连蛋白β4亚基的PMQKMRGDVFSP被发现能支持hiPSC - CMs的最高黏附和肌节形成。借助生物信息学,肽功能化水凝胶微阵列加速了新型生物配体的发现,以开发用于干细胞和组织工程应用的生物材料。
在本论文中,我们描述了一种制备肽功能化合成水凝胶微阵列的强大方法。结合生物信息学,该技术使我们能够快速识别新型生物配体,以开发用于干细胞和组织工程应用的下一代功能性生物材料。