Suppr超能文献

微藻随时间的高频介电泳响应。

High frequency dielectrophoretic response of microalgae over time.

作者信息

Hadady Hanieh, Wong Johnson J, Hiibel Sage R, Redelman Doug, Geiger Emil J

机构信息

Mechanical Engineering Department, University of Nevada, Reno, USA.

出版信息

Electrophoresis. 2014 Dec;35(24):3533-40. doi: 10.1002/elps.201400306. Epub 2014 Nov 2.

Abstract

The high frequency dielectrophoresis (>20 MHz) response of microalgae cells with different lipid content was monitored over time. Chlamydomonas reinhardtii was cultured in regular medium and under nitrogen-depleted conditions in order to produce populations of cells with low and high lipid content, respectively. The electrical conductivity of the culture media was also monitored over the same time. The upper crossover frequency decreased for high-lipid cells over time. The single-shell model predicts that the upper crossover frequency is dictated primarily by the dielectric properties of the cytoplasm. The high frequency DEP response of the high-lipid cells' cytoplasm was changed by lipid accumulation. DEP response of the low-lipid cells also varied with the conductivity of the culture media due to nutrient consumption. Relative lipid content was estimated with BODIPY 505/515 dye by calculating the area-weighted intensity average of fluorescent images. Finally, microalgae cells were successfully separated based on lipid content at 41 MHz and DEP media conductivity 106 ± 1 μS/cm.

摘要

随着时间的推移,监测了不同脂质含量的微藻细胞的高频介电泳(>20 MHz)响应。莱茵衣藻分别在常规培养基和缺氮条件下培养,以分别产生低脂质含量和高脂质含量的细胞群体。同时也监测了培养基的电导率。随着时间的推移,高脂质细胞的上交叉频率降低。单壳模型预测,上交叉频率主要由细胞质的介电特性决定。脂质积累改变了高脂质细胞细胞质的高频DEP响应。由于营养物质的消耗,低脂质细胞的DEP响应也随培养基的电导率而变化。通过计算荧光图像的面积加权强度平均值,用BODIPY 505/515染料估计相对脂质含量。最后,在41 MHz和DEP培养基电导率106±1 μS/cm的条件下,基于脂质含量成功分离了微藻细胞。

相似文献

1
High frequency dielectrophoretic response of microalgae over time.
Electrophoresis. 2014 Dec;35(24):3533-40. doi: 10.1002/elps.201400306. Epub 2014 Nov 2.
2
Separation of microalgae with different lipid contents by dielectrophoresis.
Bioresour Technol. 2013 May;135:137-41. doi: 10.1016/j.biortech.2012.11.046. Epub 2012 Nov 27.
3
Liposomes as a model for the study of high frequency dielectrophoresis.
Electrophoresis. 2015 Jul;36(13):1423-8. doi: 10.1002/elps.201400480. Epub 2015 May 18.
6
Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics.
Analyst. 2017 Apr 7;142(7):1054-1060. doi: 10.1039/c6an02221a. Epub 2017 Mar 15.
7
A separability parameter for dielectrophoretic cell separation.
Electrophoresis. 2013 Apr;34(7):1051-8. doi: 10.1002/elps.201200411. Epub 2013 Mar 7.
8
On-chip microfluidic buffer swap of biological samples in-line with downstream dielectrophoresis.
Electrophoresis. 2022 Jun;43(12):1275-1282. doi: 10.1002/elps.202100304. Epub 2022 Apr 20.
9
High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines.
Anal Bioanal Chem. 2020 Jun;412(16):3847-3857. doi: 10.1007/s00216-020-02467-1. Epub 2020 Mar 4.
10
Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers.
Electrophoresis. 2015 Jul;36(13):1499-506. doi: 10.1002/elps.201500119. Epub 2015 Jun 12.

引用本文的文献

1
Compensation of capacitive currents in high-throughput dielectrophoretic separators.
Sci Rep. 2024 Jul 17;14(1):16491. doi: 10.1038/s41598-024-67030-9.
2
Biomechanics of circulating cellular and subcellular bioparticles: beyond separation.
Cell Commun Signal. 2024 Jun 17;22(1):331. doi: 10.1186/s12964-024-01707-6.
4
The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae.
Micromachines (Basel). 2021 Sep 22;12(10):1137. doi: 10.3390/mi12101137.
5
Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae.
Biotechnol Biofuels. 2019 Feb 15;12:33. doi: 10.1186/s13068-019-1369-z. eCollection 2019.

本文引用的文献

2
Separation of microalgae with different lipid contents by dielectrophoresis.
Bioresour Technol. 2013 May;135:137-41. doi: 10.1016/j.biortech.2012.11.046. Epub 2012 Nov 27.
3
Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining.
Bioresour Technol. 2013 Jan;127:386-90. doi: 10.1016/j.biortech.2012.09.068. Epub 2012 Sep 27.
7
Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
Electrophoresis. 2011 Sep;32(18):2466-87. doi: 10.1002/elps.201100060. Epub 2011 Aug 26.
8
A miniaturized continuous dielectrophoretic cell sorter and its applications.
Biomicrofluidics. 2010 Jun 29;4(2):022807. doi: 10.1063/1.3430542.
9
Review article-dielectrophoresis: status of the theory, technology, and applications.
Biomicrofluidics. 2010 Jun 29;4(2):022811. doi: 10.1063/1.3456626.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验