Suppr超能文献

在线与下游介电泳芯片微流控缓冲液交换生物样品。

On-chip microfluidic buffer swap of biological samples in-line with downstream dielectrophoresis.

机构信息

Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA.

Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Electrophoresis. 2022 Jun;43(12):1275-1282. doi: 10.1002/elps.202100304. Epub 2022 Apr 20.

Abstract

Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on-chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100-fold lower conductivity media by using tangential flows of low media conductivity at 200-fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow-focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow-focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on-chip sample preparation platform prior to or post-dielectrophoresis, in-line with on-chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.

摘要

基于生物物理和电生理学表型的介电泳微流控细胞富集要求将细胞从生理介质中重新悬浮到低电导率缓冲液中,以增强力场并实现分离所需的介电对比度。为了确保敏感细胞不经过离心重新悬浮,并使其在培养介质外的时间最小化,我们提出了一种用于将细胞交换到适合介电泳的介质中的片上微流控策略。该策略通过使用低电导率的切向流将细胞从生理介质转移到电导率低 100 倍的介质中,与样品流相比,其流速高 200 倍,以促进离子在直通道结构中的扩散,该结构保持流聚焦样品的层流并最小化细胞在流线中的分散。在流聚焦区域的下游使用蛇形通道来调节中心样品出口相对于侧翼出口的流体动力学阻力,以去除多余的缓冲液,从而使细胞流线在交换缓冲液中收集,细胞数量的稀释最小化,并且在支持介电泳的流速下。我们设想在介电泳之前或之后集成此片上样品制备平台,与片上监测出口样品的电导率、细胞速度、细胞活力、细胞位置和收集的细胞数量等指标相结合,以便可以根据需要调整细胞流速和流线,从而实现从异质样品中进行介电泳分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a935/9543471/d3e126331cec/ELPS-43-1275-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验