Suppr超能文献

微型化连续介电泳细胞分选器及其应用。

A miniaturized continuous dielectrophoretic cell sorter and its applications.

机构信息

Microsystems Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), BM 3.124 Station 17, Lausanne, Vaud 1015, Switzerland.

出版信息

Biomicrofluidics. 2010 Jun 29;4(2):022807. doi: 10.1063/1.3430542.

Abstract

There is great interest in highly sensitive separation methods capable of quickly isolating a particular cell type within a single manipulation step prior to their analysis. We present a cell sorting device based on the opposition of dielectrophoretic forces that discriminates between cell types according to their dielectric properties, such as the membrane permittivity and the cytoplasm conductivity. The forces are generated by an array of electrodes located in both sidewalls of a main flow channel. Cells with different dielectric responses perceive different force magnitudes and are, therefore, continuously focused to different equilibrium positions in the flow channel, thus avoiding the need of a specific cell labeling as discriminating factor. We relate the cells' dielectric response to their output position in the downstream channel. Using this microfluidic platform that integrates a method of continuous-flow cell separation based on multiple frequency dielectrophoresis, we succeeded in sorting viable from nonviable yeast with nearly 100% purity. The method also allowed to increase the infection rate of a cell culture up to 50% of parasitemia percentage, which facilitates the study of the parasite cycle. Finally, we prove the versatility of our device by synchronizing a yeast cell culture at a particular phase of the cell cycle avoiding the use of metabolic agents interfering with the cells' physiology.

摘要

人们对能够在单个操作步骤内快速分离特定细胞类型的高度敏感分离方法非常感兴趣,然后再对其进行分析。我们提出了一种基于介电泳力对抗的细胞分选装置,该装置根据细胞的介电特性(例如膜介电常数和细胞质电导率)来区分细胞类型。力是由位于主流动通道两侧壁上的电极阵列产生的。具有不同介电响应的细胞感知到不同的力大小,因此,它们会在流动通道中连续聚焦到不同的平衡位置,从而避免了将特定的细胞标记作为区分因素的需要。我们将细胞的介电响应与其在下游通道中的输出位置联系起来。使用这种集成了基于多频介电泳的连续流动细胞分离方法的微流控平台,我们成功地以近 100%的纯度从非存活酵母中分离出存活酵母。该方法还可以将细胞培养物的感染率提高到寄生虫百分比的 50%,这有助于寄生虫周期的研究。最后,我们通过在细胞周期的特定阶段同步酵母细胞培养物来证明我们的设备的多功能性,从而避免使用干扰细胞生理的代谢试剂。

相似文献

1
A miniaturized continuous dielectrophoretic cell sorter and its applications.
Biomicrofluidics. 2010 Jun 29;4(2):022807. doi: 10.1063/1.3430542.
2
Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
Lab Chip. 2008 Feb;8(2):280-6. doi: 10.1039/b710303d. Epub 2007 Nov 15.
3
A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells.
Electrophoresis. 2022 Feb;43(3):501-508. doi: 10.1002/elps.202100031. Epub 2021 Nov 30.
4
Microfluidic dielectrophoretic sorter using gel vertical electrodes.
Biomicrofluidics. 2014 May 23;8(3):034105. doi: 10.1063/1.4880244. eCollection 2014 May.
5
Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
Lab Chip. 2005 Oct;5(10):1161-7. doi: 10.1039/b505088j. Epub 2005 Aug 2.
6
Using dielectrophoretic spectra to identify and separate viable yeast cells.
Appl Microbiol Biotechnol. 2023 Dec;107(24):7647-7655. doi: 10.1007/s00253-023-12809-5. Epub 2023 Oct 10.
7
A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction.
Electrophoresis. 2011 Jun;32(12):1508-14. doi: 10.1002/elps.201000675. Epub 2011 May 11.
8
Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells.
Biomicrofluidics. 2012 Mar;6(1):14113-1411310. doi: 10.1063/1.3690470. Epub 2012 Mar 1.
9
A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps.
Electrophoresis. 2015 Jan;36(2):284-91. doi: 10.1002/elps.201400397. Epub 2014 Dec 18.

引用本文的文献

4
Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing.
Micromachines (Basel). 2018 Feb 16;9(2):86. doi: 10.3390/mi9020086.
6
Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization.
Sensors (Basel). 2018 Sep 20;18(10):3175. doi: 10.3390/s18103175.
7
Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.
Biomicrofluidics. 2018 Jun 8;12(3):034111. doi: 10.1063/1.5028419. eCollection 2018 May.
8
Laser-fabricated cell patterning stencil for single cell analysis.
BMC Biotechnol. 2017 Dec 19;17(1):89. doi: 10.1186/s12896-017-0408-8.
9
A Numerical Simulation of Cell Separation by Simplified Asymmetric Pinched Flow Fractionation.
Comput Math Methods Med. 2016;2016:2564584. doi: 10.1155/2016/2564584. Epub 2016 Aug 15.
10
Particle migration and sorting in microbubble streaming flows.
Biomicrofluidics. 2016 Feb 26;10(1):014124. doi: 10.1063/1.4942458. eCollection 2016 Jan.

本文引用的文献

1
Tracking and synchronization of the yeast cell cycle using dielectrophoretic opacity.
Lab Chip. 2011 May 21;11(10):1754-60. doi: 10.1039/c1lc00007a. Epub 2011 Mar 29.
2
Dielectrophoretic separation of cells: Continuous separation.
Biotechnol Bioeng. 1995 Feb 20;45(4):337-43. doi: 10.1002/bit.260450408.
3
Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes.
Bioelectrochemistry. 2008 Aug;73(2):123-8. doi: 10.1016/j.bioelechem.2008.04.018. Epub 2008 Apr 18.
4
An equilibrium method for continuous-flow cell sorting using dielectrophoresis.
Anal Chem. 2008 May 1;80(9):3135-43. doi: 10.1021/ac7020568. Epub 2008 Mar 26.
5
Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
Lab Chip. 2008 Feb;8(2):280-6. doi: 10.1039/b710303d. Epub 2007 Nov 15.
6
A virtual valve for smooth contamination-free flow switching.
Lab Chip. 2007 Sep;7(9):1111-3. doi: 10.1039/b708360b. Epub 2007 Jul 20.
7
A simple pneumatic setup for driving microfluidics.
Lab Chip. 2007 Apr;7(4):420-2. doi: 10.1039/b617673a. Epub 2007 Feb 16.
8
Characterization and optimization of liquid electrodes for lateral dielectrophoresis.
Lab Chip. 2007 Mar;7(3):355-65. doi: 10.1039/b612866a. Epub 2006 Dec 21.
9
Continuous dielectrophoretic cell separation microfluidic device.
Lab Chip. 2007 Feb;7(2):239-48. doi: 10.1039/b613344d. Epub 2006 Dec 1.
10
Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
Lab Chip. 2004 Jun;4(3):241-51. doi: 10.1039/b313761a. Epub 2004 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验