Department of Psychological and Brain Sciences and
Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065.
J Neurosci. 2014 Sep 17;34(38):12701-15. doi: 10.1523/JNEUROSCI.0229-14.2014.
Head and eye movements incessantly modulate the luminance signals impinging onto the retina during natural intersaccadic fixation. Yet, little is known about how these fixational movements influence the statistics of retinal stimulation. Here, we provide the first detailed characterization of the visual input to the human retina during normal head-free fixation. We used high-resolution recordings of head and eye movements in a natural viewing task to examine how they jointly transform spatial information into temporal modulations. In agreement with previous studies, we report that both the head and the eyes move considerably during fixation. However, we show that fixational head and eye movements mostly compensate for each other, yielding a spatiotemporal redistribution of the input power to the retina similar to that previously observed under head immobilization. The resulting retinal image motion counterbalances the spectral distribution of natural scenes, giving temporal modulations that are equalized in power over a broad range of spatial frequencies. These findings support the proposal that "ocular drift," the smooth fixational motion of the eye, is under motor control, and indicate that the spatiotemporal reformatting caused by fixational behavior is an important computational element in the encoding of visual information.
在自然眼跳间固视期间,头部和眼部运动不断调制作用在视网膜上的亮度信号。然而,对于这些固视运动如何影响视网膜刺激的统计数据,我们知之甚少。在这里,我们首次详细描述了在正常无头部固定状态下,人类视网膜接收到的视觉输入。我们使用在自然观察任务中对头和眼部运动的高分辨率记录来研究它们如何共同将空间信息转化为时间调制。与先前的研究一致,我们报告说在固视期间头部和眼睛都会有相当大的运动。然而,我们表明固视时头部和眼部运动主要相互补偿,从而导致输入到视网膜的空间功率重新分布,类似于以前在头部固定状态下观察到的情况。由此产生的视网膜图像运动平衡了自然场景的光谱分布,使得在广泛的空间频率范围内功率均衡的时间调制。这些发现支持了“眼漂”(眼睛平滑的固视运动)受运动控制的观点,并表明固视行为引起的时空重格式化是视觉信息编码的一个重要计算元素。