Jönsson Linus, Sandin Rickard, Ekman Mattias, Ramsberg Joakim, Charbonneau Claudie, Huang Xin, Jönsson Bengt, Weinstein Milton C, Drummond Michael
OptumInsight AB, Klarabergsviadukten, Stockholm, Sweden.
Global Health Economics and Outcomes Research, Pfizer Oncology, Sollentuna, Sweden.
Value Health. 2014 Sep;17(6):707-13. doi: 10.1016/j.jval.2014.06.006.
Offering patients in oncology trials the opportunity to cross over to active treatment at disease progression is a common strategy to address ethical issues associated with placebo controls but may lead to statistical challenges in the analysis of overall survival and cost-effectiveness because crossover leads to information loss and dilution of comparative clinical efficacy.
We provide an overview of how to address crossover, implications for risk-effect estimates of survival (hazard ratios) and cost-effectiveness, and how this influences decisions of reimbursement agencies. Two case studies using data from two phase III sunitinib oncology trials are used as illustration.
We reviewed the literature on statistical methods for adjusting for crossover and recent health technology assessment decisions in oncology.
We show that for a trial with a high proportion of crossover from the control arm to the investigational arm, the choice of the statistical method greatly affects treatment-effect estimates and cost-effectiveness because the range of relative mortality risk for active treatment versus control is broad. With relatively frequent crossover, one should consider either the inverse probability of censoring weighting or the rank-preserving structural failure time model to minimize potential bias, with choice dependent on crossover characteristics, trial size, and available data. A large proportion of crossover favors the rank-preserving structural failure time model, while large sample size and abundant information about confounding factors favors the inverse probability of censoring weighting model. When crossover is very infrequent, methods yield similar results.
Failure to correct for crossover may lead to suboptimal decisions by pricing and reimbursement authorities, thereby limiting an effective drug's potential.
在肿瘤学试验中,为患者提供在疾病进展时转而接受积极治疗的机会是解决与安慰剂对照相关伦理问题的常见策略,但这可能会给总生存期分析和成本效益分析带来统计挑战,因为交叉会导致信息丢失和比较临床疗效的稀释。
我们概述如何处理交叉问题、其对生存风险效应估计(风险比)和成本效益的影响,以及这如何影响报销机构的决策。使用两项舒尼替尼肿瘤学III期试验的数据进行两个案例研究作为说明。
我们回顾了关于调整交叉的统计方法的文献以及肿瘤学中近期的卫生技术评估决策。
我们表明,对于从对照组交叉到试验组比例较高的试验,统计方法的选择会极大地影响治疗效应估计和成本效益,因为积极治疗与对照相比的相对死亡风险范围很广。在交叉相对频繁的情况下,应考虑采用逆删失概率加权法或秩保持结构失效时间模型,以尽量减少潜在偏差,具体选择取决于交叉特征、试验规模和可用数据。较大比例的交叉有利于秩保持结构失效时间模型,而大样本量和关于混杂因素的丰富信息有利于逆删失概率加权模型。当交叉非常罕见时,各种方法会产生相似的结果。
未能对交叉进行校正可能会导致定价和报销当局做出次优决策,从而限制有效药物的潜力。