Suppr超能文献

解读临床试验数据:反概率 censoring 加权分析能否解决交叉偏倚问题?

Making sense of clinical trial data: is inverse probability of censoring weighted analysis the answer to crossover bias?

机构信息

Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

J Clin Oncol. 2012 Feb 1;30(4):453-8. doi: 10.1200/JCO.2010.34.2808. Epub 2012 Jan 3.

Abstract

Ideally, therapeutic interventions are evaluated through randomized clinical trials. These trials are commonly analyzed with an intent-to-treat (ITT) approach, whereby patients are analyzed in their assigned treatment group regardless of actual treatment received. If an interim analysis of such trials demonstrates compelling evidence of a difference in benefit, ethical considerations often dictate that the trial be unblinded and participants be provided access to the more efficacious agent. Because interim analysis may not address longer-term outcomes of interest, important clinical questions such as overall survival benefit-the ultimate test of efficacy to many-may remain unanswered. The ensuing crossover disturbs randomization and may lead to biased longer-term analysis, compromising the utility of clinical data. This has been especially apparent in recent adjuvant and prevention breast cancer trials. We consider four such trials: HERA (Herceptin Adjuvant), NSABP P-1 (National Surgical Adjuvant Breast and Bowel Project Breast Cancer Prevention P-1), MA.17, and BIG 1-98 (Breast International Group 1-98), the long-term outcomes of which were complicated by unblinding and selective crossover. We also discuss the biases associated with ITT analysis and, alternatively, censoring of follow-up data (ie, dropping out) after selective crossover. Moreover, we discuss how the statistical procedure of inverse probability of censoring weighted (IPCW) analysis may be used to account for selective crossover as an alternative to ITT or censoring analysis, as was recently done for the BIG 1-98 trial. Notably, IPCW analysis may be particularly suited for detecting overall survival benefits that otherwise would not be detected with an ITT approach, as reported for the BIG 1-98 trial.

摘要

理想情况下,治疗干预措施是通过随机临床试验来评估的。这些试验通常采用意向治疗(ITT)方法进行分析,即无论患者实际接受何种治疗,都按其分配的治疗组进行分析。如果对这些试验的中期分析显示出获益差异的有力证据,伦理考虑通常要求试验揭盲,并为患者提供更有效的药物。因为中期分析可能无法解决更长期的关注结局,所以重要的临床问题,如总生存获益——这对许多人来说是疗效的最终检验——可能仍未得到解答。随之而来的交叉打乱了随机分组,可能导致长期分析出现偏倚,从而损害临床数据的实用性。这在最近的辅助和预防乳腺癌试验中表现得尤为明显。我们考虑了四个这样的试验:HERA(曲妥珠单抗辅助治疗)、NSABP P-1(美国国家外科辅助乳腺和肠道项目乳腺癌预防 P-1)、MA.17 和 BIG 1-98(乳腺国际集团 1-98),这些试验的长期结果因揭盲和选择性交叉而变得复杂。我们还讨论了与 ITT 分析相关的偏倚,以及在选择性交叉后对随访数据(即脱落)进行删失的偏倚。此外,我们讨论了如何使用逆概率删失加权(IPCW)分析这一统计程序来处理选择性交叉,作为对 ITT 或删失分析的替代方法,最近 BIG 1-98 试验就采用了这种方法。值得注意的是,如 BIG 1-98 试验报告所示,IPCW 分析可能特别适合检测总体生存获益,而这些获益用 ITT 方法可能无法检测到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验