Zheng Guoan, Horstmeyer Roarke, Yang Changhuei
Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Nat Photonics. 2013 Sep 1;7(9):739-745. doi: 10.1038/nphoton.2013.187.
In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.
在本文中,我们报告了一种成像方法,称为傅里叶叠层显微镜(FPM),它在傅里叶空间中迭代拼接多个可变照明的低分辨率强度图像,以生成宽视场、高分辨率的复样品图像。通过采用波前校正策略,FPM方法还可以校正像差,并在数字上扩展显微镜的焦深,超越其光学系统的物理限制。作为演示,我们构建了一个显微镜原型,其分辨率为0.78μm,视场约为120mm,焦深为0.3mm(在632nm处表征)且分辨率不变。组织学切片的千兆像素彩色图像验证了FPM的成功运行。所报道的成像过程将高通量、高分辨率显微镜的一般挑战从与系统光学物理限制相关的问题转变为可通过计算解决的问题。