Suppr超能文献

使用混合泊松 - 高斯似然的广义安斯库姆变换近似的傅里叶叠层显微镜术。

Fourier ptychographic microscopy using a generalized Anscombe transform approximation of the mixed Poisson-Gaussian likelihood.

作者信息

Zhang Yongbing, Song Pengming, Dai Qionghai

出版信息

Opt Express. 2017 Jan 9;25(1):168-179. doi: 10.1364/OE.25.000168.

Abstract

Fourier ptychographic microscopy (FPM) is a novel computational microscopy technique that provides intensity images with both wide field-of-view (FOV) and high-resolution (HR). By combining ideas from synthetic aperture and phase retrieval, FPM iteratively stitches together a number of variably illuminated, low-resolution (LR) intensity images in Fourier space to reconstruct an HR complex sample image. In practice, however, the reconstruction of FPM is sensitive to the input noise, including Gaussian noise, Poisson shot noise or mixed Poisson-Gaussian noise. To efficiently address these noises, we developed a novel FPM reconstruction method termed generalized Anscombe transform approximation Fourier ptychographic (GATFP) reconstruction. The method utilizes the generalized Anscombe transform (GAT) approximation for the noise model, and a maximum likelihood theory is employed for formulating the FPM optimization problem. We validated the proposed method with both simulated data for quantitative evaluation and real experimental data captured using FPM setup. The results show that the proposed method achieves state-of-the-art performance in comparison with other approaches.

摘要

傅里叶叠层显微镜(FPM)是一种新型的计算显微镜技术,它能提供具有宽视场(FOV)和高分辨率(HR)的强度图像。通过结合合成孔径和相位恢复的思想,FPM在傅里叶空间中迭代地拼接多个不同光照的低分辨率(LR)强度图像,以重建高分辨率的复杂样本图像。然而,在实际应用中,FPM的重建对输入噪声很敏感,包括高斯噪声、泊松散粒噪声或混合泊松 - 高斯噪声。为了有效解决这些噪声问题,我们开发了一种新颖的FPM重建方法,称为广义安斯库姆变换近似傅里叶叠层(GATFP)重建。该方法利用广义安斯库姆变换(GAT)近似噪声模型,并采用最大似然理论来制定FPM优化问题。我们使用模拟数据进行定量评估,并使用FPM装置捕获的实际实验数据对所提出的方法进行了验证。结果表明,与其他方法相比,所提出的方法具有先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验