Gershoni Moran, Levin Liron, Ovadia Ofer, Toiw Yasmin, Shani Naama, Dadon Sara, Barzilai Nir, Bergman Aviv, Atzmon Gil, Wainstein Julio, Tsur Anat, Nijtmans Leo, Glaser Benjamin, Mishmar Dan
Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
Institute of Aging, Division of Endocrinology, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA.
Genome Biol Evol. 2014 Sep 22;6(10):2665-80. doi: 10.1093/gbe/evu208.
The mutation rate of the mitochondrial DNA (mtDNA), which is higher by an order of magnitude as compared with the nuclear genome, enforces tight mitonuclear coevolution to maintain mitochondrial activities. Interruption of such coevolution plays a role in interpopulation hybrid breakdown, speciation events, and disease susceptibility. Previously, we found an elevated amino acid replacement rate and positive selection in the nuclear DNA-encoded oxidative phosphorylation (OXPHOS) complex I subunit NDUFC2, a phenomenon important for the direct interaction of NDUFC2 with the mtDNA-encoded complex I subunit ND4. This finding underlines the importance of mitonuclear coevolution to physical interactions between mtDNA and nuclear DNA-encoded factors. Nevertheless, it remains unclear whether this interaction is important for the stability and activity of complex I. Here, we show that siRNA silencing of NDUFC2 reduced growth of human D-407 retinal pigment epithelial cells, significantly diminished mitochondrial membrane potential, and interfered with complex I integrity. Moreover, site-directed mutagenesis of a positively selected amino acid in NDUFC2 significantly interfered with the interaction of NDUFC2 with its mtDNA-encoded partner ND4. Finally, we show that a genotype combination involving this amino acid (NDUFC2 residue 46) and the mtDNA haplogroup HV likely altered susceptibility to type 2 diabetes mellitus in Ashkenazi Jews. Therefore, mitonuclear coevolution is important for maintaining mitonuclear factor interactions, OXPHOS, and for human health.
线粒体DNA(mtDNA)的突变率比核基因组高一个数量级,这促使线粒体与细胞核紧密协同进化以维持线粒体活性。这种协同进化的中断在种群间杂种衰败、物种形成事件和疾病易感性中起作用。此前,我们发现核DNA编码的氧化磷酸化(OXPHOS)复合体I亚基NDUFC2的氨基酸替换率升高且存在正选择,这一现象对于NDUFC2与mtDNA编码的复合体I亚基ND4的直接相互作用很重要。这一发现强调了线粒体与细胞核协同进化对mtDNA和核DNA编码因子之间物理相互作用的重要性。然而,这种相互作用对复合体I的稳定性和活性是否重要仍不清楚。在此,我们表明,用小干扰RNA(siRNA)沉默NDUFC2会降低人D - 407视网膜色素上皮细胞的生长,显著降低线粒体膜电位,并干扰复合体I的完整性。此外,对NDUFC2中一个正选择的氨基酸进行定点诱变会显著干扰NDUFC2与其mtDNA编码的伙伴ND4之间的相互作用。最后,我们表明,涉及该氨基酸(NDUFC2第46位残基)和mtDNA单倍群HV的基因型组合可能改变了德系犹太人患2型糖尿病的易感性。因此,线粒体与细胞核的协同进化对于维持线粒体与细胞核因子的相互作用、氧化磷酸化以及人类健康很重要。