Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.
Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA.
Mol Biol Evol. 2022 Nov 3;39(11). doi: 10.1093/molbev/msac233.
Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.
线粒体(mt)和核编码蛋白在线粒体呼吸中整合在一起,需要来自根本不同基因组的基因产物的共同功能。不同的进化率、遗传机制和选择压力为两个基因组相互作用的产物之间的不兼容性奠定了基础。线粒体与核的共同进化假说假设,如果一个基因组的进化选择了另一个基因组中相互作用基因的互补变化,那么不兼容性可能会避免。核补偿机制,即 mtDNA 变化的有害影响由核变化补偿抵消,通常被认为是线粒体与核共同进化的主要机制。然而,支持核补偿的直接证据很少。在这里,我们使用了来自代表八个目的 58 种哺乳动物的数据,表明 mt 和核编码 mt 靶向(N-mt)蛋白的进化率之间存在很强的相关性,但 mt 和非 mt 靶向核蛋白之间没有相关性,这为哺乳动物的线粒体与核的共同进化提供了强有力的支持。与 mt 直接相互作用的 N-mt 基因也显示出最强的相关性。尽管大多数 N-mt 基因的 dN/dS 比值比 mt 基因高(如核补偿所预测),但与非接触 N-mt 位点相比,与 mt 蛋白密切接触的 N-mt 位点并没有因正选择而过度代表(与核补偿的预测相反)。此外,N-mt 和 mt 氨基酸替换的时间模式不支持核补偿的预测,即使在具有直接线粒体与核相互作用的正选择、功能重要的残基中也是如此。总的来说,我们的研究结果强烈支持线粒体与核在约 1.7 亿年的哺乳动物进化中共同进化,但不能支持核补偿作为线粒体与核共同进化的主要模式。