Suppr超能文献

相似文献

1
Scavenging of H2O2 by mouse brain mitochondria.
J Bioenerg Biomembr. 2014 Dec;46(6):471-7. doi: 10.1007/s10863-014-9581-9. Epub 2014 Sep 24.
2
Temperature rise and copper exposure reduce heart mitochondrial reactive oxygen species scavenging capacity.
Comp Biochem Physiol C Toxicol Pharmacol. 2021 May;243:108999. doi: 10.1016/j.cbpc.2021.108999. Epub 2021 Feb 5.
3
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
Redox Biol. 2014 Apr 24;2:667-72. doi: 10.1016/j.redox.2014.04.010. eCollection 2014.
5
HO metabolism in liver and heart mitochondria: Low emitting-high scavenging and high emitting-low scavenging systems.
Free Radic Biol Med. 2018 Aug 20;124:135-148. doi: 10.1016/j.freeradbiomed.2018.05.064. Epub 2018 May 24.
6
Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
Aquat Toxicol. 2019 Sep;214:105264. doi: 10.1016/j.aquatox.2019.105264. Epub 2019 Jul 25.
7
Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+.
J Biol Chem. 2004 Feb 6;279(6):4166-74. doi: 10.1074/jbc.M308143200. Epub 2003 Nov 20.
8
A radical shift in perspective: mitochondria as regulators of reactive oxygen species.
J Exp Biol. 2017 Apr 1;220(Pt 7):1170-1180. doi: 10.1242/jeb.132142.
9
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
10
Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
J Biol Chem. 2010 Sep 3;285(36):27850-8. doi: 10.1074/jbc.M110.101196. Epub 2010 Jun 17.

引用本文的文献

1
Ca Inhibits Reactive Oxygen Species Scavenging in Naked Mole-Rat Cortical Homogenates.
Cell Mol Neurobiol. 2025 Aug 27;45(1):82. doi: 10.1007/s10571-025-01603-8.
3
The cell origin of reactive oxygen species and its implication for evolutionary trade-offs.
Open Biol. 2025 Apr;15(4):240312. doi: 10.1098/rsob.240312. Epub 2025 Apr 16.
5
Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin.
Antioxidants (Basel). 2025 Feb 18;14(2):235. doi: 10.3390/antiox14020235.
6
Glutathione dynamics in subcellular compartments and implications for drug development.
Curr Opin Chem Biol. 2024 Aug;81:102505. doi: 10.1016/j.cbpa.2024.102505. Epub 2024 Jul 24.
7
Bioenergetic myths of energy transduction in eukaryotic cells.
Front Mol Biosci. 2024 Jun 17;11:1402910. doi: 10.3389/fmolb.2024.1402910. eCollection 2024.
8
Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice.
Res Sq. 2023 Dec 13:rs.3.rs-3678629. doi: 10.21203/rs.3.rs-3678629/v1.
9
Mitochondrial Properties in Skeletal Muscle Fiber.
Cells. 2023 Aug 30;12(17):2183. doi: 10.3390/cells12172183.
10
Stability of Phenyl-Modified Triphenylphosphonium Conjugates and Interactions with DTPA.
ACS Omega. 2022 Dec 13;7(51):48332-48339. doi: 10.1021/acsomega.2c06525. eCollection 2022 Dec 27.

本文引用的文献

1
Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
J Biol Chem. 2010 Sep 3;285(36):27850-8. doi: 10.1074/jbc.M110.101196. Epub 2010 Jun 17.
2
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.
Biochem J. 2009 Dec 23;425(2):313-25. doi: 10.1042/BJ20091541.
3
The role of mitochondria in reactive oxygen species metabolism and signaling.
Ann N Y Acad Sci. 2008 Dec;1147:37-52. doi: 10.1196/annals.1427.015.
4
Bioenergetics and the formation of mitochondrial reactive oxygen species.
Trends Pharmacol Sci. 2006 Dec;27(12):639-45. doi: 10.1016/j.tips.2006.10.005. Epub 2006 Oct 23.
5
Mitochondrial metabolism of reactive oxygen species.
Biochemistry (Mosc). 2005 Feb;70(2):200-14. doi: 10.1007/s10541-005-0102-7.
6
Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+.
J Biol Chem. 2004 Feb 6;279(6):4166-74. doi: 10.1074/jbc.M308143200. Epub 2003 Nov 20.
7
Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state.
J Neurochem. 2003 Sep;86(5):1101-7. doi: 10.1046/j.1471-4159.2003.01908.x.
9
Hyperoxia increases H2O2 production by brain in vivo.
J Appl Physiol (1985). 1987 Jul;63(1):353-8. doi: 10.1152/jappl.1987.63.1.353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验