Department of Earth and Planetary Sciences, University of Tennessee Knoxville, TN, USA.
Front Microbiol. 2014 Sep 8;5:473. doi: 10.3389/fmicb.2014.00473. eCollection 2014.
Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.
陆地硫化物泉通过作为稳定的地下通道,为具有不同地球化学性质和富含营养的地下水提供了多样化的微生物群落。在陆地上栖息的微生物可能起源于地下水,但也可能来自地表。因此,栖息在硫化物泉中的微生物群落的生物地理分布应该受到泉水地球化学和地表及地下传输机制的共同控制,而不一定与其他泉水的地理位置接近。我们检查了七个泉水的细菌多样性,以检验以下假设:即每个泉水中分类上相似的微生物(对硫循环很重要)的出现是由地球化学控制的。补充的 Sanger 测序和 16S rRNA 基因的 454 焦磷酸测序从所有泉水中获得了五个变形菌门,以及拟杆菌门、绿菌门、绿屈挠菌门和厚壁菌门,这表明了潜在的核心硫化物泉微生物组。在假定的硫化物氧化菌(ε变形菌和γ变形菌)中,高达 83%的具有相似地球化学特征的泉水中的序列聚类在一起。丰度较高的 Hydrogenimonas 样或 Sulfurovum 样 spp.(ε变形菌)与丰度较高的 Thiothrix 和 Thiofaba 样 spp.(γ变形菌)一起出现,但 Arcobacter 样和 Sulfurimonas 样 spp.(ε变形菌)与较少丰度的γ变形菌种群一起出现。这些分布模式证实,是地球化学而不是生物地理学调节了每个泉水中细菌的优势地位。潜在的生物地理控制因素与古地质沉积模式有关,这些模式可以控制将地表和地下环境联系起来的长期微生物传输机制。了解核心硫化物泉微生物群落的组成,可以在一个系统受到人为过程或气候变化的威胁时,提供监测多样性变化的方法。