Suppr超能文献

看似不相关回归有助于检测痴呆症中的网络故障。

Seemingly unrelated regression empowers detection of network failure in dementia.

作者信息

Jahanshad Neda, Nir Talia M, Toga Arthur W, Jack Clifford R, Bernstein Matt A, Weiner Michael W, Thompson Paul M

机构信息

Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA.

Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA.

出版信息

Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S103-12. doi: 10.1016/j.neurobiolaging.2014.02.032. Epub 2014 Aug 27.

Abstract

Brain connectivity is progressively disrupted in Alzheimer's disease (AD). Here, we used a seemingly unrelated regression (SUR) model to enhance the power to identify structural connections related to cognitive scores. We simultaneously solved regression equations with different predictors and used correlated errors among the equations to boost power for associations with brain networks. Connectivity maps were computed to represent the brain's fiber networks from diffusion-weighted magnetic resonance imaging scans of 200 subjects from the Alzheimer's Disease Neuroimaging Initiative. We first identified a pattern of brain connections related to clinical decline using standard regressions powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans are rare, it is important to detect effects in smaller samples using simultaneous regression modeling like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE genotype and educational level. In a subsample with no apparent associations using the general linear model, power was boosted with our SUR model-combining genotype, educational level, and clinical diagnosis.

摘要

在阿尔茨海默病(AD)中,大脑连接性会逐渐受到破坏。在此,我们使用看似不相关回归(SUR)模型来增强识别与认知分数相关的结构连接的能力。我们同时求解具有不同预测变量的回归方程,并利用方程之间的相关误差来提高与脑网络关联的能力。通过对来自阿尔茨海默病神经影像倡议组织的200名受试者的扩散加权磁共振成像扫描计算连接图,以表示大脑的纤维网络。我们首先使用由这个大样本量支持的标准回归来识别与临床衰退相关的脑连接模式。由于使用大量扩散张量成像扫描的AD研究很少见,因此使用像SUR这样的同时回归建模在较小样本中检测效应很重要。众所周知,轻度认知障碍或AD的诊断与载脂蛋白E基因型和教育水平有关。在使用一般线性模型没有明显关联的子样本中,我们的SUR模型结合基因型、教育水平和临床诊断提高了检验效能。

相似文献

1
Seemingly unrelated regression empowers detection of network failure in dementia.看似不相关回归有助于检测痴呆症中的网络故障。
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S103-12. doi: 10.1016/j.neurobiolaging.2014.02.032. Epub 2014 Aug 27.
2
Connectivity network measures predict volumetric atrophy in mild cognitive impairment.连通性网络测量可预测轻度认知障碍中的体积萎缩。
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S113-20. doi: 10.1016/j.neurobiolaging.2014.04.038. Epub 2014 Aug 30.
3
Brain connectivity and novel network measures for Alzheimer's disease classification.用于阿尔茨海默病分类的脑连接性和新型网络测量方法。
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S121-31. doi: 10.1016/j.neurobiolaging.2014.04.037. Epub 2014 Aug 30.

本文引用的文献

1
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.阿尔茨海默病中的纤维束成像密度及网络测量
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:692-695. doi: 10.1109/ISBI.2013.6556569.
6
Bi-level multi-source learning for heterogeneous block-wise missing data.用于异质分块缺失数据的双层多源学习。
Neuroimage. 2014 Nov 15;102 Pt 1:192-206. doi: 10.1016/j.neuroimage.2013.08.015. Epub 2013 Aug 27.
7
Genetics of the connectome.连接组学的遗传学。
Neuroimage. 2013 Oct 15;80:475-88. doi: 10.1016/j.neuroimage.2013.05.013. Epub 2013 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验