Jahanshad Neda, Nir Talia M, Toga Arthur W, Jack Clifford R, Bernstein Matt A, Weiner Michael W, Thompson Paul M
Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA.
Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S103-12. doi: 10.1016/j.neurobiolaging.2014.02.032. Epub 2014 Aug 27.
Brain connectivity is progressively disrupted in Alzheimer's disease (AD). Here, we used a seemingly unrelated regression (SUR) model to enhance the power to identify structural connections related to cognitive scores. We simultaneously solved regression equations with different predictors and used correlated errors among the equations to boost power for associations with brain networks. Connectivity maps were computed to represent the brain's fiber networks from diffusion-weighted magnetic resonance imaging scans of 200 subjects from the Alzheimer's Disease Neuroimaging Initiative. We first identified a pattern of brain connections related to clinical decline using standard regressions powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans are rare, it is important to detect effects in smaller samples using simultaneous regression modeling like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE genotype and educational level. In a subsample with no apparent associations using the general linear model, power was boosted with our SUR model-combining genotype, educational level, and clinical diagnosis.
在阿尔茨海默病(AD)中,大脑连接性会逐渐受到破坏。在此,我们使用看似不相关回归(SUR)模型来增强识别与认知分数相关的结构连接的能力。我们同时求解具有不同预测变量的回归方程,并利用方程之间的相关误差来提高与脑网络关联的能力。通过对来自阿尔茨海默病神经影像倡议组织的200名受试者的扩散加权磁共振成像扫描计算连接图,以表示大脑的纤维网络。我们首先使用由这个大样本量支持的标准回归来识别与临床衰退相关的脑连接模式。由于使用大量扩散张量成像扫描的AD研究很少见,因此使用像SUR这样的同时回归建模在较小样本中检测效应很重要。众所周知,轻度认知障碍或AD的诊断与载脂蛋白E基因型和教育水平有关。在使用一般线性模型没有明显关联的子样本中,我们的SUR模型结合基因型、教育水平和临床诊断提高了检验效能。