Suppr超能文献

正常衰老和阿尔茨海默病之间大脑连接的崩溃:结构 k 核网络分析。

Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis.

机构信息

Department of Neurology, Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90025, USA.

出版信息

Brain Connect. 2013;3(4):407-22. doi: 10.1089/brain.2012.0137.

Abstract

Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually break down in aging and Alzheimer's disease (AD). Even so, we know very little about how the brain's networks change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15 with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.7±7.6 SD years). We performed whole brain tractography based on the orientation distribution functions, and compiled connectivity matrices showing the proportions of detected fibers interconnecting 68 cortical regions. We computed a variety of measures sensitive to anatomical network topology, including the structural backbone--the so-called "k-core"--of the anatomical network, and the nodal degree. We found widespread network disruptions, as connections were lost in AD. Among other connectivity measures showing disease effects, network nodal degree, normalized characteristic path length, and efficiency decreased with disease, while normalized small-worldness increased, in the whole brain and left and right hemispheres individually. The normalized clustering coefficient also increased in the whole brain; we discuss factors that may cause this effect. The proportions of fibers intersecting left and right cortical regions were asymmetrical in all diagnostic groups. This asymmetry may intensify as disease progressed. Connectivity metrics based on the k-core may help understand brain network breakdown as cognitive impairment increases, revealing how degenerative diseases affect the human connectome.

摘要

脑连接分析在理解我们的神经通路如何在衰老和阿尔茨海默病(AD)中逐渐崩溃方面显示出巨大的潜力。即便如此,我们对 AD 中大脑网络的变化以及评估这些变化的最佳指标知之甚少。为了更好地了解 AD 如何影响大脑连接,我们分析了 111 名受试者(15 名 AD 患者,68 名轻度认知障碍患者和 28 名健康老年人;平均年龄 73.7±7.6 岁)的基于 3-T 扩散加权图像的解剖连接。我们基于方向分布函数进行了全脑束追踪,并编译了连接矩阵,显示了检测到的纤维在 68 个皮质区域之间的互连比例。我们计算了各种对解剖网络拓扑敏感的度量,包括解剖网络的结构主干——所谓的“k-core”——和节点度。我们发现广泛的网络中断,因为在 AD 中连接丢失。在其他显示疾病影响的连接性测量中,网络节点度、归一化特征路径长度和效率随着疾病的发展而降低,而归一化小世界度在整个大脑和左右半球中分别增加。整个大脑的归一化聚类系数也增加了;我们讨论了可能导致这种效应的因素。在所有诊断组中,左右皮质区域之间的纤维交叉比例都是不对称的。随着疾病的进展,这种不对称性可能会加剧。基于 k-core 的连接性度量可能有助于理解认知障碍增加时大脑网络的崩溃,揭示退行性疾病如何影响人类连接组。

相似文献

10
Connectivity network measures predict volumetric atrophy in mild cognitive impairment.连通性网络测量可预测轻度认知障碍中的体积萎缩。
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S113-20. doi: 10.1016/j.neurobiolaging.2014.04.038. Epub 2014 Aug 30.

引用本文的文献

5
Overview of ADNI MRI.ADNI MRI 概述。
Alzheimers Dement. 2024 Oct;20(10):7350-7360. doi: 10.1002/alz.14166. Epub 2024 Sep 11.

本文引用的文献

1
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.阿尔茨海默病中的纤维束成像密度及网络测量
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:692-695. doi: 10.1109/ISBI.2013.6556569.
4
Mapping connectivity in the developing brain.绘制发育中大脑的连接图谱。
Int J Dev Neurosci. 2013 Nov;31(7):525-42. doi: 10.1016/j.ijdevneu.2013.05.007. Epub 2013 May 27.
5
Test-retest reliability of graph theory measures of structural brain connectivity.脑结构连接性的图论测量方法的重测信度。
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):305-12. doi: 10.1007/978-3-642-33454-2_38.
6
Disrupted brain networks in the aging HIV+ population.衰老 HIV+人群的大脑网络紊乱。
Brain Connect. 2012;2(6):335-44. doi: 10.1089/brain.2012.0105-Rev.
9
Persistent brain network homology from the perspective of dendrogram.从树状图的角度看大脑网络的持续同质性。
IEEE Trans Med Imaging. 2012 Dec;31(12):2267-77. doi: 10.1109/TMI.2012.2219590. Epub 2012 Sep 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验