Suppr超能文献

正常衰老和阿尔茨海默病之间大脑连接的崩溃:结构 k 核网络分析。

Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis.

机构信息

Department of Neurology, Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90025, USA.

出版信息

Brain Connect. 2013;3(4):407-22. doi: 10.1089/brain.2012.0137.

Abstract

Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually break down in aging and Alzheimer's disease (AD). Even so, we know very little about how the brain's networks change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15 with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.7±7.6 SD years). We performed whole brain tractography based on the orientation distribution functions, and compiled connectivity matrices showing the proportions of detected fibers interconnecting 68 cortical regions. We computed a variety of measures sensitive to anatomical network topology, including the structural backbone--the so-called "k-core"--of the anatomical network, and the nodal degree. We found widespread network disruptions, as connections were lost in AD. Among other connectivity measures showing disease effects, network nodal degree, normalized characteristic path length, and efficiency decreased with disease, while normalized small-worldness increased, in the whole brain and left and right hemispheres individually. The normalized clustering coefficient also increased in the whole brain; we discuss factors that may cause this effect. The proportions of fibers intersecting left and right cortical regions were asymmetrical in all diagnostic groups. This asymmetry may intensify as disease progressed. Connectivity metrics based on the k-core may help understand brain network breakdown as cognitive impairment increases, revealing how degenerative diseases affect the human connectome.

摘要

脑连接分析在理解我们的神经通路如何在衰老和阿尔茨海默病(AD)中逐渐崩溃方面显示出巨大的潜力。即便如此,我们对 AD 中大脑网络的变化以及评估这些变化的最佳指标知之甚少。为了更好地了解 AD 如何影响大脑连接,我们分析了 111 名受试者(15 名 AD 患者,68 名轻度认知障碍患者和 28 名健康老年人;平均年龄 73.7±7.6 岁)的基于 3-T 扩散加权图像的解剖连接。我们基于方向分布函数进行了全脑束追踪,并编译了连接矩阵,显示了检测到的纤维在 68 个皮质区域之间的互连比例。我们计算了各种对解剖网络拓扑敏感的度量,包括解剖网络的结构主干——所谓的“k-core”——和节点度。我们发现广泛的网络中断,因为在 AD 中连接丢失。在其他显示疾病影响的连接性测量中,网络节点度、归一化特征路径长度和效率随着疾病的发展而降低,而归一化小世界度在整个大脑和左右半球中分别增加。整个大脑的归一化聚类系数也增加了;我们讨论了可能导致这种效应的因素。在所有诊断组中,左右皮质区域之间的纤维交叉比例都是不对称的。随着疾病的进展,这种不对称性可能会加剧。基于 k-core 的连接性度量可能有助于理解认知障碍增加时大脑网络的崩溃,揭示退行性疾病如何影响人类连接组。

相似文献

3
Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network.
Hum Brain Mapp. 2015 Aug;36(8):3087-103. doi: 10.1002/hbm.22830. Epub 2015 Jun 3.
4
5
Neural substrates of cognitive reserve in Alzheimer's disease spectrum and normal aging.
Neuroimage. 2019 Feb 1;186:690-702. doi: 10.1016/j.neuroimage.2018.11.053. Epub 2018 Nov 29.
8
Eigenvector alignment: Assessing functional network changes in amnestic mild cognitive impairment and Alzheimer's disease.
PLoS One. 2020 Aug 27;15(8):e0231294. doi: 10.1371/journal.pone.0231294. eCollection 2020.
9
Changes of intranetwork and internetwork functional connectivity in Alzheimer's disease and mild cognitive impairment.
J Neural Eng. 2016 Aug;13(4):046008. doi: 10.1088/1741-2560/13/4/046008. Epub 2016 Jun 1.
10
Connectivity network measures predict volumetric atrophy in mild cognitive impairment.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S113-20. doi: 10.1016/j.neurobiolaging.2014.04.038. Epub 2014 Aug 30.

引用本文的文献

4
Evaluation of Mean Shift, ComBat, and CycleGAN for Harmonizing Brain Connectivity Matrices Across Sites.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005563. Epub 2024 Apr 2.
5
Overview of ADNI MRI.
Alzheimers Dement. 2024 Oct;20(10):7350-7360. doi: 10.1002/alz.14166. Epub 2024 Sep 11.
6
Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum.
Brain Behav Immun Health. 2024 Aug 3;40:100834. doi: 10.1016/j.bbih.2024.100834. eCollection 2024 Oct.
8
Temporal tau asymmetry spectrum influences divergent behavior and language patterns in Alzheimer's disease.
Brain Behav Immun. 2024 Jul;119:807-817. doi: 10.1016/j.bbi.2024.05.002. Epub 2024 May 6.
9
MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal.
Magn Reson Imaging. 2024 Sep;111:113-119. doi: 10.1016/j.mri.2024.03.033. Epub 2024 Mar 26.

本文引用的文献

1
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:692-695. doi: 10.1109/ISBI.2013.6556569.
2
LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS.
Proc IEEE Int Symp Biomed Imaging. 2012 May;2012:526-529. doi: 10.1109/ISBI.2012.6235601.
3
Alzheimer's Disease Disrupts Rich Club Organization in Brain Connectivity Networks.
Proc IEEE Int Symp Biomed Imaging. 2013:266-269. doi: 10.1109/ISBI.2013.6556463.
4
Mapping connectivity in the developing brain.
Int J Dev Neurosci. 2013 Nov;31(7):525-42. doi: 10.1016/j.ijdevneu.2013.05.007. Epub 2013 May 27.
5
Test-retest reliability of graph theory measures of structural brain connectivity.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):305-12. doi: 10.1007/978-3-642-33454-2_38.
6
Disrupted brain networks in the aging HIV+ population.
Brain Connect. 2012;2(6):335-44. doi: 10.1089/brain.2012.0105-Rev.
7
Magnetic resonance field strength effects on diffusion measures and brain connectivity networks.
Brain Connect. 2013;3(1):72-86. doi: 10.1089/brain.2012.0114. Epub 2013 Jan 30.
9
Persistent brain network homology from the perspective of dendrogram.
IEEE Trans Med Imaging. 2012 Dec;31(12):2267-77. doi: 10.1109/TMI.2012.2219590. Epub 2012 Sep 19.
10
Development of brain structural connectivity between ages 12 and 30: a 4-Tesla diffusion imaging study in 439 adolescents and adults.
Neuroimage. 2013 Jan 1;64:671-84. doi: 10.1016/j.neuroimage.2012.09.004. Epub 2012 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验