Daianu Madelaine, Mezher Adam, Jahanshad Neda, Hibar Derrek P, Nir Talia M, Jack Clifford R, Weiner Michael W, Bernstein Matt A, Thompson Paul M
Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California.
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:458-461. doi: 10.1109/ISBI.2015.7163910.
Our understanding of network breakdown in Alzheimer's disease (AD) is likely to be enhanced through advanced mathematical descriptors. Here, we applied spectral graph theory to provide novel metrics of structural connectivity based on 3-Tesla diffusion weighted images in 42 AD patients and 50 healthy controls. We reconstructed connectivity networks using whole-brain tractography and examined, for the first time here, cortical disconnection based on the graph energy and spectrum. We further assessed supporting metrics - link density and nodal strength - to better interpret our results. Metrics were analyzed in relation to the well-known -4 genetic risk factor for late-onset AD. The number of disconnected cortical regions increased with the number of copies of the -4 risk gene in people with AD. Each additional copy of the -4 risk gene may lead to more dysfunctional networks with weakened or abnormal connections, providing evidence for the previously hypothesized "disconnection syndrome".
通过先进的数学描述符,我们对阿尔茨海默病(AD)中网络崩溃的理解可能会得到增强。在此,我们应用谱图理论,基于42例AD患者和50名健康对照的3特斯拉扩散加权图像,提供结构连通性的新指标。我们使用全脑纤维束成像重建连通性网络,并在此首次基于图能量和频谱研究皮质断开。我们进一步评估了支持性指标——连接密度和节点强度——以更好地解释我们的结果。对这些指标与晚发性AD中著名的-4遗传风险因素进行了分析。在AD患者中,断开的皮质区域数量随着-4风险基因拷贝数的增加而增加。-4风险基因的每一个额外拷贝可能导致更多功能失调的网络,其连接减弱或异常,为先前假设的“断开综合征”提供了证据。