Suppr超能文献

用于阿尔茨海默病分类的脑连接性和新型网络测量方法。

Brain connectivity and novel network measures for Alzheimer's disease classification.

作者信息

Prasad Gautam, Joshi Shantanu H, Nir Talia M, Toga Arthur W, Thompson Paul M

机构信息

Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.

Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.

出版信息

Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S121-31. doi: 10.1016/j.neurobiolaging.2014.04.037. Epub 2014 Aug 30.

Abstract

We compare a variety of different anatomic connectivity measures, including several novel ones, that may help in distinguishing Alzheimer's disease (AD) patients from controls. We studied diffusion-weighted magnetic resonance imaging from 200 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We first evaluated measures derived from connectivity matrices based on whole-brain tractography; next, we studied additional network measures based on a novel flow-based measure of brain connectivity, computed on a dense 3-dimensional lattice. Based on these 2 kinds of connectivity matrices, we computed a variety of network measures. We evaluated the measures' ability to discriminate disease with a repeated, stratified 10-fold cross-validated classifier, using support vector machines, a supervised learning algorithm. We tested the relative importance of different combinations of features based on the accuracy, sensitivity, specificity, and feature ranking of the classification of 200 people into normal healthy controls and people with early or late mild cognitive impairment or AD.

摘要

我们比较了多种不同的解剖学连接性测量方法,包括几种新方法,这些方法可能有助于区分阿尔茨海默病(AD)患者和对照者。我们研究了来自200名受试者的扩散加权磁共振成像,这些受试者作为阿尔茨海默病神经成像计划的一部分接受了扫描。我们首先评估了基于全脑纤维束成像的连接矩阵得出的测量方法;接下来,我们研究了基于一种新的基于流的脑连接性测量方法的额外网络测量方法,该方法是在密集的三维晶格上计算得出的。基于这两种连接矩阵,我们计算了多种网络测量方法。我们使用支持向量机(一种监督学习算法),通过重复的分层10折交叉验证分类器评估了这些测量方法区分疾病的能力。我们根据将200人分为正常健康对照者以及患有早期或晚期轻度认知障碍或AD患者的分类的准确性、敏感性、特异性和特征排名,测试了不同特征组合的相对重要性。

相似文献

1
Brain connectivity and novel network measures for Alzheimer's disease classification.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S121-31. doi: 10.1016/j.neurobiolaging.2014.04.037. Epub 2014 Aug 30.
2
Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S132-40. doi: 10.1016/j.neurobiolaging.2014.05.037. Epub 2014 Aug 27.
3
Connectivity network measures predict volumetric atrophy in mild cognitive impairment.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S113-20. doi: 10.1016/j.neurobiolaging.2014.04.038. Epub 2014 Aug 30.
4
Seemingly unrelated regression empowers detection of network failure in dementia.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S103-12. doi: 10.1016/j.neurobiolaging.2014.02.032. Epub 2014 Aug 27.
5
A novel approach to brain connectivity reveals early structural changes in Alzheimer's disease.
Physiol Meas. 2018 Jul 23;39(7):074005. doi: 10.1088/1361-6579/aacf1f.
7
A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.
Behav Brain Res. 2019 Jun 3;365:210-221. doi: 10.1016/j.bbr.2019.03.004. Epub 2019 Mar 2.

引用本文的文献

1
Overview of ADNI MRI.
Alzheimers Dement. 2024 Oct;20(10):7350-7360. doi: 10.1002/alz.14166. Epub 2024 Sep 11.
2
Machine learning-based prediction of mild cognitive impairment among individuals with normal cognitive function.
Front Neurol. 2024 Feb 2;15:1352423. doi: 10.3389/fneur.2024.1352423. eCollection 2024.
3
Automated Classification of Mild Cognitive Impairment by Machine Learning With Hippocampus-Related White Matter Network.
Front Aging Neurosci. 2022 Jun 14;14:866230. doi: 10.3389/fnagi.2022.866230. eCollection 2022.
5
Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis.
Front Neuroinform. 2022 Apr 29;16:886365. doi: 10.3389/fninf.2022.886365. eCollection 2022.
8
Pseudo-Label-Assisted Self-Organizing Maps for Brain Tissue Segmentation in Magnetic Resonance Imaging.
J Digit Imaging. 2022 Apr;35(2):180-192. doi: 10.1007/s10278-021-00557-9. Epub 2022 Jan 11.
9
Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer's Disease.
Neuroinformatics. 2022 Apr;20(2):391-403. doi: 10.1007/s12021-021-09554-3. Epub 2021 Nov 26.

本文引用的文献

1
OPTIMIZING BRAIN CONNECTIVITY NETWORKS FOR DISEASE CLASSIFICATION USING EPIC.
Proc IEEE Int Symp Biomed Imaging. 2014 May;2014:834-837. doi: 10.1109/ISBI.2014.6868000.
2
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:692-695. doi: 10.1109/ISBI.2013.6556569.
3
ATLAS-BASED FIBER CLUSTERING FOR MULTI-SUBJECT ANALYSIS OF HIGH ANGULAR RESOLUTION DIFFUSION IMAGING TRACTOGRAPHY.
Proc IEEE Int Symp Biomed Imaging. 2011 Apr;2011:276-280. doi: 10.1109/ISBI.2011.5872405.
4
A Dynamical Clustering Model of Brain Connectivity Inspired by the -Body Problem.
Multimodal Brain Image Anal (2013). 2013;8159:129-137. doi: 10.1007/978-3-319-02126-3_13.
5
FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE.
Proc IEEE Int Symp Biomed Imaging. 2013;2013:258-261. doi: 10.1109/ISBI.2013.6556461.
6
High-order graph matching based feature selection for Alzheimer's disease identification.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):311-8. doi: 10.1007/978-3-642-40763-5_39.
7
Sex differences in the structural connectome of the human brain.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):823-8. doi: 10.1073/pnas.1316909110. Epub 2013 Dec 2.
9
Classification of Alzheimer's disease using a self-smoothing operator.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):58-65. doi: 10.1007/978-3-642-23626-6_8.
10
Robust brain extraction across datasets and comparison with publicly available methods.
IEEE Trans Med Imaging. 2011 Sep;30(9):1617-34. doi: 10.1109/TMI.2011.2138152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验