Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Nencki Institute of Experimental Biology, 3 Pasteur St, 02-093, Warsaw, Poland.
Sci Rep. 2019 Apr 11;9(1):5906. doi: 10.1038/s41598-019-42418-0.
Biochemistry in living cells is an emerging field of science. Current quantitative bioassays are performed ex vivo, thus equilibrium constants and reaction rates of reactions occurring in human cells are still unknown. To address this issue, we present a non-invasive method to quantitatively characterize interactions (equilibrium constants, K) directly within the cytosol of living cells. We reveal that cytosolic hydrodynamic drag depends exponentially on a probe's size, and provide a model for its determination for different protein sizes (1-70 nm). We analysed oligomerization of dynamin-related protein 1 (Drp1, wild type and mutants: K668E, G363D, C505A) in HeLa cells. We detected the coexistence of wt-Drp1 dimers and tetramers in cytosol, and determined that K for tetramers was 0.7 ± 0.5 μM. Drp1 kinetics was modelled by independent simulations, giving computational results which matched experimental data. This robust method can be applied to in vivo determination of K for other protein-protein complexes, or drug-target interactions.
活细胞中的生物化学是一个新兴的科学领域。目前的定量生物测定是在体外进行的,因此,发生在人体细胞中的反应的平衡常数和反应速率仍然未知。为了解决这个问题,我们提出了一种非侵入性的方法,可以直接定量描述活细胞胞质溶胶中的相互作用(平衡常数 K)。我们揭示了胞质流体动力阻力与探针大小呈指数相关,并为不同蛋白质大小(1-70nm)提供了确定其大小的模型。我们分析了 HeLa 细胞中与 dynamin 相关蛋白 1(Drp1,野生型和突变型:K668E、G363D、C505A)的寡聚化。我们在细胞质中检测到 wt-Drp1 二聚体和四聚体的共存,并确定四聚体的 K 值为 0.7±0.5μM。通过独立模拟对 Drp1 动力学进行建模,得到了与实验数据相匹配的计算结果。这种稳健的方法可以应用于体内其他蛋白质-蛋白质复合物或药物-靶标相互作用的 K 值的测定。