Dobchev Dimitar A, Pillai Girinath G, Karelson Mati
Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, Tallinn 19086, Estonia.
Curr Top Med Chem. 2014;14(16):1913-22. doi: 10.2174/1568026614666140929124203.
Machine learning (ML) computational methods for predicting compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties are being increasingly applied in drug discovery and evaluation. Recently, machine learning techniques such as artificial neural networks, support vector machines and genetic programming have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic targets. These methods are particularly useful for screening compound libraries of diverse chemical structures, "noisy" and high-dimensional data to complement QSAR methods, and in cases of unavailable receptor 3D structure to complement structure-based methods. A variety of studies have demonstrated the potential of machine-learning methods for predicting compounds as potential drug candidates. The present review is intended to give an overview of the strategies and current progress in using machine learning methods for drug design and the potential of the respective model development tools. We also regard a number of applications of the machine learning algorithms based on common classes of diseases.
用于预测具有药理活性、特定药效学和ADMET(吸收、分布、代谢、排泄和毒性)特性的化合物的机器学习(ML)计算方法在药物发现和评估中得到了越来越广泛的应用。最近,诸如人工神经网络、支持向量机和遗传编程等机器学习技术已被用于预测与特定治疗靶点相关的蛋白质的抑制剂、拮抗剂、阻滞剂、激动剂、激活剂和底物。这些方法对于筛选具有不同化学结构的化合物库、“嘈杂”且高维的数据以补充QSAR方法,以及在无法获得受体三维结构的情况下补充基于结构的方法特别有用。各种研究已经证明了机器学习方法在预测化合物作为潜在药物候选物方面的潜力。本综述旨在概述使用机器学习方法进行药物设计的策略和当前进展以及各自模型开发工具的潜力。我们还考虑了基于常见疾病类别的机器学习算法的一些应用。