Hibar Derrek P, Stein Jason L, Jahanshad Neda, Kohannim Omid, Hua Xue, Toga Arthur W, McMahon Katie L, de Zubicaray Greig I, Martin Nicholas G, Wright Margaret J, Weiner Michael W, Thompson Paul M
Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA.
Centre for Magnetic Resonance, School of Psychology, University of Queensland, Brisbane, Queensland, Australia.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S151-8. doi: 10.1016/j.neurobiolaging.2014.02.033. Epub 2014 Aug 27.
The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.
几种影响阿尔茨海默病风险的基因的发现引发了全球范围内对单核苷酸多态性(SNP)的搜寻,SNP是影响大脑的常见基因变异。对所有可能的SNP-SNP相互作用进行全基因组搜索具有挑战性,而且由于要进行大约10的11次方个成对统计检验,这种尝试很少。然而,机器学习方面的最新进展,例如迭代确定独立筛选,使得分析预测变量比观测值多得多的数据集成为可能。我们使用确定独立筛选算法的一个实现(称为EPISIS),进行了全基因组相互作用分析,测试了所有可能影响通过磁共振成像测量并使用基于张量的形态学进行映射的脑区体积的SNP-SNP相互作用。我们确定了rs1345203和rs1213205之间存在显著的SNP-SNP相互作用,该相互作用解释了颞叶体积1.9%的变异。我们在阿尔茨海默病神经影像倡议数据集中以及在健康双胞胎的独立复制数据集(昆士兰双胞胎成像)中分别对全脑进行了体素级的相互作用效应映射。在阿尔茨海默病神经影像倡议和昆士兰双胞胎成像样本中,相互作用效应中的每一个额外负荷都与脑区脑体积大约大5%(一种保护作用)相关。