Chen Weili, Long Kenneth D, Yu Hojeong, Tan Yafang, Choi Ji Sun, Harley Brendan A, Cunningham Brian T
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801, USA.
Analyst. 2014 Nov 21;139(22):5954-63. doi: 10.1039/c4an01508h.
We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.
我们展示了光子晶体增强荧光(PCEF)显微镜作为一种表面特异性荧光成像技术,通过可视化细胞 - 底物间隙距离的变化来研究活细胞的粘附。这种方法利用集成在标准显微镜载玻片上的光子晶体表面作为细胞粘附的底物,并将一台与定制照明源集成的显微镜作为检测仪器。当用单色光源照射时,光子晶体支持的角度特异性光学共振在共振条件下激发时能够有效地激发表面受限和放大的电磁场,而当相同的光子晶体在非共振状态下照射时则不会发生场增强。通过绘制共振和非共振状态下荧光团标记的细胞成分的荧光增强因子,并将结果与数值计算进行比较,可以估计标记的细胞成分与光子晶体底物的垂直距离,从而提供有关附着在表面的细胞特定成分空间分布的关键定量信息。作为该概念的初步证明,将3T3成纤维细胞培养在涂有纤连蛋白的光子晶体上,这些光子晶体带有荧光团标记的质膜或细胞核。我们证明,PCEF显微镜能够在单细胞水平上提供有关细胞 - 表面相互作用空间分布的信息,而这些信息是其他现有显微镜形式无法提供的,并且该方法适用于大视野,无需耦合棱镜、耦合液或特殊显微镜物镜。