Liu-Bryan Ru, Terkeltaub Robert
San Diego VA Healthcare System and Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
Nat Rev Rheumatol. 2015 Jan;11(1):35-44. doi: 10.1038/nrrheum.2014.162. Epub 2014 Sep 30.
Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease progression. Effective disease-modifying OA therapies are lacking, but better understanding inflammatory pathophysiology in OA could lead to transformative therapy. Networks of diverse innate inflammatory danger signals, including complement and alarmins, are activated in OA. Through inflammatory mediators, biomechanical injury and oxidative stress compromise the viability of chondrocytes, reprogramming them to hypertrophic differentiation and proinflammatory and pro-catabolic responses. Integral to this reprogramming are 'switching' pathways in transcriptional networks, other than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling; HIF-2α transcriptional signalling and ZIP8-mediated Zn(2+) uptake, with downstream MTF1 transcriptional signalling, have been implicated but further validation is required. Permissive factors, including impaired bioenergetics via altered mitochondrial function and decreased activity of bioenergy sensors, interact with molecular inflammatory responses and proteostasis mechanisms such as the unfolded protein response and autophagy. Bioenergy-sensing by AMPK and SIRT1 provides 'stop signals' for oxidative stress, inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular inflammatory processes in OA and the involvement of multiple inflammatory mediators in tissue repair responses, raises daunting questions about how to therapeutically target inflammatory processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic 'entry point'.
骨关节炎(OA)中的慢性低度炎症会导致症状和疾病进展。目前缺乏有效的改善病情的OA治疗方法,但更好地了解OA中的炎症病理生理学可能会带来变革性疗法。在OA中,包括补体和警报素在内的多种先天性炎症危险信号网络被激活。通过炎症介质,生物力学损伤和氧化应激损害软骨细胞的活力,使其重新编程为肥大分化以及促炎和促分解代谢反应。除了已充分表征的NFκB和丝裂原活化蛋白激酶信号传导的作用外,转录网络中的“转换”途径对于这种重新编程至关重要;HIF-2α转录信号传导和ZIP8介导的Zn(2+)摄取以及下游MTF1转录信号传导已被牵连,但需要进一步验证。包括通过改变线粒体功能导致生物能量受损和生物能量传感器活性降低在内的许可因素,与分子炎症反应和蛋白质稳态机制(如未折叠蛋白反应和自噬)相互作用。AMPK和SIRT1对生物能量的感知为软骨细胞中的氧化应激、炎症和基质分解代谢过程提供“停止信号”。OA中分子炎症过程的复杂性以及多种炎症介质参与组织修复反应,引发了关于如何在OA中对炎症过程和宏观炎症进行治疗靶向的艰巨问题。生物能量感知可能提供一个实用的“切入点”。