Chhetri Raghav K, Blackmon Richard L, Wu Wei-Chen, Hill David B, Button Brian, Casbas-Hernandez Patricia, Troester Melissa A, Tracy Joseph B, Oldenburg Amy L
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255;
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4289-97. doi: 10.1073/pnas.1409321111. Epub 2014 Sep 29.
Biological materials exhibit complex nanotopology, i.e., a composite liquid and solid phase structure that is heterogeneous on the nanoscale. The diffusion of nanoparticles in nanotopological environments can elucidate biophysical changes associated with pathogenesis and disease progression. However, there is a lack of methods that characterize nanoprobe diffusion and translate easily to in vivo studies. Here, we demonstrate a method based on optical coherence tomography (OCT) to depth-resolve diffusion of plasmon-resonant gold nanorods (GNRs) that are weakly constrained by the biological tissue. By using GNRs that are on the size scale of the polymeric mesh, their Brownian motion is minimally hindered by intermittent collisions with local macromolecules. OCT depth-resolves the particle-averaged translational diffusion coefficient (DT) of GNRs within each coherence volume, which is separable from the nonequilibrium motile activities of cells based on the unique polarized light-scattering properties of GNRs. We show how this enables minimally invasive imaging and monitoring of nanotopological changes in a variety of biological models, including extracellular matrix (ECM) remodeling as relevant to carcinogenesis, and dehydration of pulmonary mucus as relevant to cystic fibrosis. In 3D ECM models, DT of GNRs decreases with both increasing collagen concentration and cell density. Similarly, DT of GNRs is sensitive to human bronchial-epithelial mucus concentration over a physiologically relevant range. This novel method comprises a broad-based platform for studying heterogeneous nanotopology, as distinct from bulk viscoelasticity, in biological milieu.
生物材料呈现出复杂的纳米拓扑结构,即一种在纳米尺度上具有异质性的复合液相和固相结构。纳米颗粒在纳米拓扑环境中的扩散可以阐明与发病机制和疾病进展相关的生物物理变化。然而,缺乏能够表征纳米探针扩散并易于转化为体内研究的方法。在此,我们展示了一种基于光学相干断层扫描(OCT)的方法,用于深度解析受生物组织弱约束的等离子体共振金纳米棒(GNR)的扩散。通过使用尺寸与聚合物网相当的GNR,其布朗运动受与局部大分子的间歇性碰撞的阻碍最小。OCT深度解析每个相干体积内GNR的粒子平均平动扩散系数(DT),基于GNR独特的偏振光散射特性,该系数可与细胞的非平衡运动活性区分开来。我们展示了这如何实现对多种生物模型中纳米拓扑变化的微创成像和监测,包括与致癌作用相关的细胞外基质(ECM)重塑以及与囊性纤维化相关的肺黏液脱水。在三维ECM模型中,GNR的DT随胶原蛋白浓度和细胞密度的增加而降低。同样,在生理相关范围内,GNR的DT对人支气管上皮黏液浓度敏感。这种新方法构成了一个广泛的平台,用于研究生物环境中与整体粘弹性不同的异质纳米拓扑结构。