Hiraoka Tomoki, Nestler Sandra, Zhang Wentao, Rossel Simon, Hafez Hassan A, Fabretti Savio, Schlörb Heike, Thomas Andy, Turchinovich Dmitry
Fakultät für Physik, Universität Bielefeld, Bielefeld, Germany.
Leibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20, Dresden, Germany.
Nat Commun. 2025 Jun 5;16(1):5235. doi: 10.1038/s41467-025-60588-6.
Layered two-dimensional (2D) materials offer many promising avenues for advancing modern electronics, thanks to their tunable optical, electronic, and magnetic properties. Applying a strong electric field perpendicular to the layers, typically at the MV/cm level, is a highly effective way to control these properties. However, conventional methods to induce such fields employ electric circuit - based gating techniques, which are restricted to microwave response rates and face challenges in achieving device-compatible ultrafast, sub-picosecond control. Here, we demonstrate an ultrafast field effect in atomically thin MoS embedded within a hybrid 3D-2D terahertz nanoantenna. This nanoantenna transforms an incoming terahertz electric field into a vertical ultrafast gating field in MoS, simultaneously enhancing it to the MV/cm level. The terahertz field effect is observed as a coherent terahertz-induced Stark shift of exciton resonances in MoS. Our results offer a promising strategy to tune and operate ultrafast optoelectronic devices based on 2D materials.
层状二维(2D)材料因其可调节的光学、电子和磁性特性,为推动现代电子学发展提供了许多有前景的途径。垂直于层施加强电场,通常在兆伏/厘米级别,是控制这些特性的一种非常有效的方法。然而,传统的诱导此类电场的方法采用基于电路的门控技术,这种技术限于微波响应速率,并且在实现与器件兼容的超快、亚皮秒控制方面面临挑战。在此,我们展示了嵌入混合3D-2D太赫兹纳米天线中的原子级薄MoS₂中的超快场效应。这种纳米天线将入射的太赫兹电场转换为MoS₂中的垂直超快门控场,同时将其增强到兆伏/厘米级别。太赫兹场效应表现为MoS₂中激子共振的相干太赫兹诱导斯塔克位移。我们的结果为基于二维材料的超快光电器件的调谐和操作提供了一种有前景的策略。