Suppr超能文献

杏仁核、纹状体和皮层的棘状神经元利用树突峰电位来检测网络 UP 状态。

Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states.

机构信息

Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA.

出版信息

Front Cell Neurosci. 2014 Sep 17;8:292. doi: 10.3389/fncel.2014.00292. eCollection 2014.

Abstract

SPINY NEURONS OF AMYGDALA, STRIATUM, AND CEREBRAL CORTEX SHARE FOUR INTERESTING FEATURES: (1) they are the most abundant cell type within their respective brain area, (2) covered by thousands of thorny protrusions (dendritic spines), (3) possess high levels of dendritic NMDA conductances, and (4) experience sustained somatic depolarizations in vivo and in vitro (UP states). In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials ("dendritic UP states") characterized by (i) fast rise, (ii) plateau phase lasting several hundred milliseconds, and (iii) abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates toward the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200-800 ms) steady depolarization (∼20 mV amplitude), which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states). We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

摘要

杏仁核、纹状体和大脑皮层的棘神经元具有四个有趣的特征:(1)它们是各自脑区中最丰富的细胞类型;(2)被数千个多刺的突起(树突棘)覆盖;(3)具有高水平的树突 NMDA 电导;(4)在体内和体外经历持续的躯体去极化(UP 状态)。在前脑的所有棘神经元中,足够的谷氨酸能输入会产生树突平台电位(“树突 UP 状态”),其特征为:(i)快速上升;(ii)持续数百毫秒的平台相;(iii)在平台相结束时突然下降。树突平台电位向细胞体递减传播,引起持续时间长(超过 100 毫秒,通常为 200-800 毫秒)的稳定去极化(约 20 mV 幅度),类似于神经元 UP 状态。基于电压敏感染料成像,胞体中的平台去极化与发生在树突中的再生平台电位精确地时间锁定。在树突电压瞬变开始后,胞体的平台上升,并随着树突平台去极化的崩溃而下降。我们假设体内神经元 UP 状态反映了树突平台电位的发生。我们提出,神经元 UP 状态期间的胞体电压波形由树突平台电位决定。哺乳动物棘神经元利用树突平台电位来检测和转换连贯的网络活动,形成普遍存在的神经元 UP 状态。树突平台电位的生物物理特性允许神经元快速适应当前的网络活动,并确保连续 UP 状态的稳定幅度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验