Suppr超能文献

苔藓纤维诱发的阈下反应在海马 CA3 回传突触诱导时间依赖性可塑性。

Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses.

机构信息

Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4303-8. doi: 10.1073/pnas.1317667111. Epub 2014 Feb 18.

Abstract

Dentate granule cells exhibit exceptionally low levels of activity and rarely elicit action potentials in targeted CA3 pyramidal cells. It is thus unclear how such weak input from the granule cells sustains adequate levels of synaptic plasticity in the targeted CA3 network. We report that subthreshold potentials evoked by mossy fibers are sufficient to induce synaptic plasticity between CA3 pyramidal cells, thereby complementing the sparse action potential discharge. Repetitive pairing of a CA3-CA3 recurrent synaptic response with a subsequent subthreshold mossy fiber response induced long-term potentiation at CA3 recurrent synapses in rat hippocampus in vitro. Reversing the timing of the inputs induced long-term depression. The underlying mechanism depends on a passively conducted giant excitatory postsynaptic potential evoked by a mossy fiber that enhances NMDA receptor-mediated current at active CA3 recurrent synapses by relieving magnesium block. The resulting NMDA spike generates a supralinear depolarization that contributes to synaptic plasticity in hippocampal neuronal ensembles implicated in memory.

摘要

颗粒细胞表现出异常低的活动水平,很少在靶向 CA3 锥体神经元中引发动作电位。因此,尚不清楚来自颗粒细胞的如此微弱的输入如何维持靶向 CA3 网络中足够水平的突触可塑性。我们报告说,苔藓纤维诱发的阈下电位足以诱导 CA3 锥体神经元之间的突触可塑性,从而补充了稀疏的动作电位放电。在体外,CA3 苔藓纤维反应的重复配对与随后的阈下苔藓纤维反应一起诱导了大鼠海马 CA3 回传突触的长时程增强。反转输入的时间会诱导长时程压抑。这种潜在的机制取决于由苔藓纤维引起的被动传导的巨大兴奋性突触后电位,该电位通过减轻镁阻断来增强活跃 CA3 回传突触上 NMDA 受体介导的电流。由此产生的 NMDA 尖峰产生超线性去极化,有助于与记忆有关的海马神经元集合中的突触可塑性。

相似文献

1
Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4303-8. doi: 10.1073/pnas.1317667111. Epub 2014 Feb 18.
3
Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity.
Nat Neurosci. 2013 Aug;16(8):1049-59. doi: 10.1038/nn.3461. Epub 2013 Jul 14.
4
Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions.
eNeuro. 2017 Dec 4;4(6). doi: 10.1523/ENEURO.0364-17.2017. eCollection 2017 Nov-Dec.
7
Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons.
Neuron. 2013 Jan 9;77(1):99-114. doi: 10.1016/j.neuron.2012.10.033.
10
Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation.
Neuron. 2018 Mar 7;97(5):1137-1152.e5. doi: 10.1016/j.neuron.2018.01.026. Epub 2018 Feb 8.

引用本文的文献

1
A multilayer-multiplexer network processing scheme based on the dendritic integration in a single neuron.
AIMS Neurosci. 2022 Feb 28;9(1):76-113. doi: 10.3934/Neuroscience.2022006. eCollection 2022.
2
Spike-timing-dependent plasticity rewards synchrony rather than causality.
Cereb Cortex. 2022 Dec 15;33(1):23-34. doi: 10.1093/cercor/bhac050.
3
Bidirectional synaptic plasticity rapidly modifies hippocampal representations.
Elife. 2021 Dec 9;10:e73046. doi: 10.7554/eLife.73046.
5
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model.
Neuroscience. 2022 May 1;489:69-83. doi: 10.1016/j.neuroscience.2021.11.014. Epub 2021 Nov 12.
6
Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits.
PLoS Comput Biol. 2021 Oct 1;17(10):e1009435. doi: 10.1371/journal.pcbi.1009435. eCollection 2021 Oct.
7
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits.
Nat Neurosci. 2021 Jul;24(7):1010-1019. doi: 10.1038/s41593-021-00857-x. Epub 2021 May 13.
8
Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse.
Brain Sci. 2021 Mar 22;11(3):404. doi: 10.3390/brainsci11030404.
9
Deeper and Deeper on the Role of BK and Kir4.1 Channels in Glioblastoma Invasiveness: A Novel Summative Mechanism?
Front Neurosci. 2020 Nov 30;14:595664. doi: 10.3389/fnins.2020.595664. eCollection 2020.
10
Dendritic Voltage Recordings Explain Paradoxical Synaptic Plasticity: A Modeling Study.
Front Synaptic Neurosci. 2020 Nov 2;12:585539. doi: 10.3389/fnsyn.2020.585539. eCollection 2020.

本文引用的文献

1
Variable dendritic integration in hippocampal CA3 pyramidal neurons.
Neuron. 2013 Dec 18;80(6):1438-50. doi: 10.1016/j.neuron.2013.10.033.
2
Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity.
Nat Neurosci. 2013 Aug;16(8):1049-59. doi: 10.1038/nn.3461. Epub 2013 Jul 14.
3
Active properties of neocortical pyramidal neuron dendrites.
Annu Rev Neurosci. 2013 Jul 8;36:1-24. doi: 10.1146/annurev-neuro-062111-150343.
4
What are the mechanisms for analogue and digital signalling in the brain?
Nat Rev Neurosci. 2013 Jan;14(1):63-9. doi: 10.1038/nrn3361. Epub 2012 Nov 28.
5
Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons.
Front Physiol. 2012 Aug 24;3:334. doi: 10.3389/fphys.2012.00334. eCollection 2012.
6
The spike-timing dependence of plasticity.
Neuron. 2012 Aug 23;75(4):556-71. doi: 10.1016/j.neuron.2012.08.001.
7
Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002. Epub 2012 Feb 27.
8
Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion.
Cell. 2012 Mar 30;149(1):188-201. doi: 10.1016/j.cell.2012.01.046. Epub 2012 Feb 23.
9
Locally synchronized synaptic inputs.
Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验