Suppr超能文献

热能收集等离子体基化学传感器。

Thermal energy harvesting plasmonic based chemical sensors.

机构信息

SUNY College of Nanoscale Science and Engineering, 257 Fuller Road, Albany, New York 12203, United States.

出版信息

ACS Nano. 2014 Oct 28;8(10):10953-62. doi: 10.1021/nn504870b. Epub 2014 Oct 8.

Abstract

Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods.

摘要

在 500°C 或更高温度下检测 H2、CO 和 NO2 等气体需要具有热稳定性和可靠性的材料。将基于等离子体的化学传感器集成的主要障碍之一是需要多个组件,例如光源和光谱仪。在这项工作中,提出了等离子体传感结果,其中使用光刻图案化的 Au 纳米棒收集热能,从而取代了对外部入射光源的需求。使用收集的热能进行气体传感的结果与使用外部入射光源的传感实验吻合良好。主成分分析 (PCA) 用于将波长参数空间从 665 个变量减少到 4 个具有相似选择性水平的变量。基于等离子体的能量收集传感范例与 PCA 分析的结合为简化和集成基于等离子体的传感方法提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验