Kowallick Johannes T, Lamata Pablo, Hussain Shazia T, Kutty Shelby, Steinmetz Michael, Sohns Jan M, Fasshauer Martin, Staab Wieland, Unterberg-Buchwald Christina, Bigalke Boris, Lotz Joachim, Hasenfuß Gerd, Schuster Andreas
Institute for Diagnostic and Interventional Radiology, Georg-August-University Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
Department of Computer Science, University of Oxford, Oxford, United Kingdom; Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas' Hospital, King's College London, London, United Kingdom.
PLoS One. 2014 Oct 6;9(10):e109164. doi: 10.1371/journal.pone.0109164. eCollection 2014.
Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach.
Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1) · min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values).
Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1), 3.6 ± 2.0° cm(-1), 5.1 ± 2.2° cm(-1), p<0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1) s(-1),-46.9 ± 15.0° cm(-1) s(-1),-68.9 ± 32.3° cm(-1) s(-1), p<0.01; for rest, 10 and 20 µg · kg(-)1 · min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation.
CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states.
心血管磁共振特征追踪(CMR-FT)可从常规电影图像中对心肌变形进行量化。然而,目前尚无使用CMR-FT量化左心室(LV)扭转和舒张期回弹的数据。因此,我们试图采用最佳解剖学方法评估CMR-FT量化LV扭转和峰值回弹率的可行性和可重复性。
对10名健康志愿者在静息状态和多巴酚丁胺刺激(10和20μg·kg⁻¹·min⁻¹)期间采集短轴电影图像堆栈。分析所有层面的旋转位移。利用相邻层面之间的线性插值建立完整的三维LV旋转模型。扭转定义为心尖和心底旋转之间的差值除以层面间距。根据最心尖(定义为LV距离的0%)和心底(定义为LV距离的100%)层面之间的距离,研究了四种不同的扭转计算模型:模型1(25%-75%)、模型2(0%-100%)、模型3(25%-100%)和模型4(0%-75%)。分析包括心内膜下、心外膜下和整体扭转及回弹率(心内膜下和心外膜下值的平均值)。
所有受试者的扭转和回弹率量化均可行。静息状态下不同模型之间无显著差异。然而,只有模型1(25%-75%)能够区分静息和应激状态(整体扭转:2.7±1.5°cm⁻¹、3.6±2.0°cm⁻¹、5.1±2.2°cm⁻¹,p<0.01;整体回弹率:-30.1±11.1°cm⁻¹·s⁻¹、-46.9±15.0°cm⁻¹·s⁻¹、-68.9±32.3°cm⁻¹·s⁻¹,p<0.01;分别对应静息、10和20μg·kg⁻¹·min⁻¹的多巴酚丁胺)。通过Bland-Altman分析、组内相关系数和变异系数确定,所有参数的可重复性均足够。
基于CMR-FT推导心肌扭转和回弹率在静息状态和多巴酚丁胺应激状态下是可行且可重复的。采用最佳解剖学方法,测量LV心尖和心底位置25%和75%处的旋转,能够有效量化扭转和回弹动力学。接下来应在疾病状态下探索CMR-FT这些新的变形测量方法的应用。