Suppr超能文献

代谢信号传导与胰岛素抵抗中的支链氨基酸

Branched-chain amino acids in metabolic signalling and insulin resistance.

作者信息

Lynch Christopher J, Adams Sean H

机构信息

Cellular and Molecular Physiology Department, The Pennsylvania State University, 500 University Drive, MC-H166, Hershey, PA 17033, USA.

Arkansas Children's Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA.

出版信息

Nat Rev Endocrinol. 2014 Dec;10(12):723-36. doi: 10.1038/nrendo.2014.171. Epub 2014 Oct 7.

Abstract

Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

摘要

支链氨基酸(BCAAs)是具有直接和间接作用的重要营养信号。BCAAs常被报道可介导抗肥胖作用,尤其是在啮齿动物模型中。然而,肥胖个体的循环BCAAs水平往往会升高,且与更差的代谢健康以及未来的胰岛素抵抗或2型糖尿病(T2DM)相关。一种将BCAAs水平升高与T2DM联系起来的假说机制涉及亮氨酸介导的雷帕霉素复合物1(mTORC1)哺乳动物靶点的激活,这会导致胰岛素信号在早期解偶联。一种BCAA代谢紊乱模型提出,线粒体毒性代谢产物(而非BCAAs本身)的积累会促进与T2DM相关的β细胞线粒体功能障碍、应激信号传导和细胞凋亡。另外,胰岛素抵抗可能通过增加胰岛素通常抑制的蛋白质降解,和/或通过引发某些组织中高效BCAA氧化代谢受损来促进氨基酸血症。本综述讨论了肥胖中是否以及如何发生BCAA代谢受损。由于几个基因(BCKDHA、PPM1K、IVD和KLF15)已被指定为人类肥胖和/或T2DM的候选基因,并且在肥胖和T2DM动物模型中检测到了组织特异性支链酮酸脱氢酶复合物活性的不同表型,因此需要研究BCAA代谢中个体和模型依赖性差异的作用。

相似文献

1
Branched-chain amino acids in metabolic signalling and insulin resistance.
Nat Rev Endocrinol. 2014 Dec;10(12):723-36. doi: 10.1038/nrendo.2014.171. Epub 2014 Oct 7.
2
Diabetes and branched-chain amino acids: What is the link?
J Diabetes. 2018 May;10(5):350-352. doi: 10.1111/1753-0407.12645. Epub 2018 Feb 13.
4
Insulin action, type 2 diabetes, and branched-chain amino acids: A two-way street.
Mol Metab. 2021 Oct;52:101261. doi: 10.1016/j.molmet.2021.101261. Epub 2021 May 24.
5
Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism.
Mol Metab. 2023 Apr;70:101694. doi: 10.1016/j.molmet.2023.101694. Epub 2023 Feb 18.
6
Restoration of metabolic health by decreased consumption of branched-chain amino acids.
J Physiol. 2018 Feb 15;596(4):623-645. doi: 10.1113/JP275075. Epub 2017 Dec 27.
7
Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer's Disease.
J Alzheimers Dis. 2023;93(3):847-862. doi: 10.3233/JAD-221147.
8
Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance.
Diabetes. 2019 Sep;68(9):1730-1746. doi: 10.2337/db18-0927. Epub 2019 Jun 5.
9
The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus.
Curr Diabetes Rev. 2015;11(1):46-62. doi: 10.2174/1573399811666150114100653.
10
Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids.
Am J Physiol Endocrinol Metab. 2019 Jan 1;316(1):E73-E85. doi: 10.1152/ajpendo.00256.2018. Epub 2018 Nov 13.

引用本文的文献

1
Branched-chain amino acids induce hyperammonemia via gut-liver axis-mediated ammonia overproduction in laying hens.
Anim Nutr. 2025 May 31;22:384-401. doi: 10.1016/j.aninu.2025.03.012. eCollection 2025 Sep.
2
The Bacterial Composition of the Gut Microbiota of Mexicans with Overweight and Obesity: A Systematic Review.
Microorganisms. 2025 Jul 24;13(8):1727. doi: 10.3390/microorganisms13081727.
3
All-flexible chronoepifluidic nanoplasmonic patch for label-free metabolite profiling in sweat.
Nat Commun. 2025 Aug 27;16(1):8017. doi: 10.1038/s41467-025-63510-2.
5
Role of branched chain amino acid metabolism on aging.
Biogerontology. 2025 Aug 23;26(5):169. doi: 10.1007/s10522-025-10309-9.
6
7
Current Data on the Role of Amino Acids in the Management of Obesity in Children and Adolescents.
Int J Mol Sci. 2025 Jul 24;26(15):7129. doi: 10.3390/ijms26157129.
8
The Oral-Gut Microbiota Axis as a Mediator of Frailty and Sarcopenia.
Nutrients. 2025 Jul 23;17(15):2408. doi: 10.3390/nu17152408.
9
Heat-moisture-treated rice improves oral glucose tolerance by modulating serum and fecal metabolites in mice.
Front Nutr. 2025 Jul 28;12:1638682. doi: 10.3389/fnut.2025.1638682. eCollection 2025.
10

本文引用的文献

1
Defining meal requirements for protein to optimize metabolic roles of amino acids.
Am J Clin Nutr. 2015 Jun;101(6):1330S-1338S. doi: 10.3945/ajcn.114.084053. Epub 2015 Apr 29.
2
Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.
Cell Metab. 2014 Nov 4;20(5):898-909. doi: 10.1016/j.cmet.2014.09.003. Epub 2014 Oct 9.
3
Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese.
J Proteome Res. 2014 Jul 3;13(7):3455-66. doi: 10.1021/pr500416v. Epub 2014 Jun 23.
4
Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein.
Am J Physiol Regul Integr Comp Physiol. 2014 Aug 1;307(3):R310-20. doi: 10.1152/ajpregu.00116.2014. Epub 2014 Jun 4.
5
Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study.
Br J Psychiatry. 2014 Jul;205(1):24-8. doi: 10.1192/bjp.bp.113.130419. Epub 2014 May 8.
6
Melatonin, energy metabolism, and obesity: a review.
J Pineal Res. 2014 May;56(4):371-81. doi: 10.1111/jpi.12137. Epub 2014 Apr 5.
7
Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet.
Obes Res Clin Pract. 2013 Dec;7(6):e439-44. doi: 10.1016/j.orcp.2013.07.003.
8
Alloisoleucine differentiates the branched-chain aminoacidemia of Zucker and dietary obese rats.
Obesity (Silver Spring). 2014 May;22(5):1212-5. doi: 10.1002/oby.20691. Epub 2014 Mar 17.
9
Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.
Nutr Clin Pract. 2013 Oct;28(5):580-8. doi: 10.1177/0884533613496432. Epub 2013 Aug 14.
10
Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice.
Obesity (Silver Spring). 2014 Mar;22(3):713-20. doi: 10.1002/oby.20578. Epub 2013 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验