Suppr超能文献

持续的乳源信号在mTORC1和乳源微小RNA驱动的2型糖尿病中的致病作用

The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus.

作者信息

Melnik Bodo C

机构信息

Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabruck, Sedanstraße 115, D-49090 Osnabrück, Germany.

出版信息

Curr Diabetes Rev. 2015;11(1):46-62. doi: 10.2174/1573399811666150114100653.

Abstract

Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosomal microRNAs. After milk consumption, bovine microRNA-29b, a member of the diabetogenic microRNA-29- family, reaches the systemic circulation and the cells of the milk consumer. MicroRNA-29b downregulates branchedchain α-ketoacid dehydrogenase, a potential explanation for increased BCAA serum levels, the metabolic signature of insulin resistance and type 2 diabetes mellitus (T2DM). In non-obese diabetic mice, microRNA-29b downregulates the antiapoptotic protein Mcl-1, which leads to early β-cell death. In all mammals except Neolithic humans, milk-driven mTORC1 signaling is physiologically restricted to the postnatal period. In contrast, chronic hyperactivated mTORC1 signaling has been associated with the development of age-related diseases of civilization including T2DM. Notably, chronic hyperactivation of mTORC1 enhances endoplasmic reticulum stress that promotes apoptosis. In fact, hyperactivated β-cell mTORC1 signaling induced early β-cell apoptosis in a mouse model. The EPIC-InterAct Study demonstrated an association between milk consumption and T2DM in France, Italy, United Kingdom, Germany, and Sweden. In contrast, fermented milk products and cheese exhibit an inverse correlation. Since the early 1950´s, refrigeration technology allowed widespread consumption of fresh pasteurized milk, which facilitates daily intake of bioactive bovine microRNAs. Persistent uptake of cow´s milk-derived microRNAs apparently transfers an overlooked epigenetic diabetogenic program that should not reach the human food chain.

摘要

乳汁是泌乳基因组的分泌产物,可促进新生哺乳动物的生长。乳汁提供促胰岛素氨基酸,从而与接受乳汁的动物的胰腺β细胞保持分子间的相互作用。β细胞的稳态和胰岛素的产生取决于mTORC1信号传导的适当强度。mTORC1由支链氨基酸(BCAAs)、谷氨酰胺和棕榈酸激活,这些都是牛奶中丰富的营养信号。此外,乳汁还传递具有生物活性的外泌体微小RNA。饮用牛奶后,致糖尿病微小RNA-29家族的成员牛微小RNA-29b进入体循环并进入饮用牛奶者的细胞。微小RNA-29b下调支链α-酮酸脱氢酶,这可能是BCAA血清水平升高的一个原因,而BCAA血清水平升高是胰岛素抵抗和2型糖尿病(T2DM)的代谢特征。在非肥胖糖尿病小鼠中,微小RNA-29b下调抗凋亡蛋白Mcl-1,导致早期β细胞死亡。除新石器时代的人类外,在所有哺乳动物中,乳汁驱动的mTORC1信号传导在生理上仅限于出生后时期。相比之下,mTORC1信号的慢性过度激活与包括T2DM在内的与年龄相关的文明病的发展有关。值得注意的是,mTORC1的慢性过度激活会增强内质网应激,从而促进细胞凋亡。事实上,在小鼠模型中,过度激活的β细胞mTORC1信号会诱导早期β细胞凋亡。EPIC-InterAct研究表明,在法国、意大利、英国、德国和瑞典,饮用牛奶与T2DM之间存在关联。相比之下,发酵乳制品和奶酪则呈现负相关。自20世纪50年代初以来,制冷技术使新鲜巴氏杀菌牛奶得以广泛消费,这便于人们每日摄入具有生物活性的牛微小RNA。持续摄入源自牛奶的微小RNA显然传递了一个被忽视的表观遗传致糖尿病程序,而这个程序本不应进入人类食物链。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20d3/4428476/fe2918a3c829/CDR-11-46_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验