Suppr超能文献

在MGH-USC连接组扫描仪上,利用高b值扩散磁共振成像研究解析复杂白质结构的能力。

Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

作者信息

Fan Qiuyun, Nummenmaa Aapo, Witzel Thomas, Zanzonico Roberta, Keil Boris, Cauley Stephen, Polimeni Jonathan R, Tisdall Dylan, Van Dijk Koene R A, Buckner Randy L, Wedeen Van J, Rosen Bruce R, Wald Lawrence L

机构信息

1 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Charlestown, Massachusetts.

出版信息

Brain Connect. 2014 Nov;4(9):718-26. doi: 10.1089/brain.2014.0305.

Abstract

One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

摘要

美国国立卫生研究院(NIH)人脑连接组计划的主要目标之一是利用扩散张量成像技术绘制并量化大脑中的白质连接。鉴于复杂白质结构的普遍性,在扩散磁共振成像(dMRI)数据中解析具有多个交叉点的局部白质几何结构的能力至关重要。有人建议增加b值以描绘取向分布函数(ODF)的更精细细节。尽管增加梯度强度和持续时间可提高对轴突内高度受限水的敏感性,但梯度强度限制需要更长的回波时间(TE)来适应实现更高b值所需增加的扩散编码时间,从而指数级降低采集的信噪比。为减轻这种影响,MGH-USC连接组扫描仪采用了300 mT/m的梯度,这可显著缩短高b值扩散成像的TE。在此,我们报告基于q球ODF指标在不同b值下进行的比较,以研究连接组扫描仪上的高b值扩散成像是否能改善对复杂白质结构的解析。随着b值增加,q球ODF特征变得更清晰,ODF的高阶球谐级数中的功率分数增加,且相对于ODF的整体大小,峰值高度增加。在越来越大比例的白质体素中检测到交叉结构,双向和三向交叉结构的空间分布在很大程度上与已知解剖结构一致。结果表明,在连接组系统上进行高扩散编码的dMRI是一种很有前景的工具,可更好地表征并最终理解人类大脑潜在的结构组织和模式。

相似文献

3
Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.为人类连接组计划推进活体扩散 MRI 的极限
Neuroimage. 2013 Oct 15;80:220-33. doi: 10.1016/j.neuroimage.2013.05.078. Epub 2013 May 24.
8
Modeling white matter microstructure with fiber ball imaging.纤维球成像技术对脑白质微观结构的建模研究。
Neuroimage. 2018 Aug 1;176:11-21. doi: 10.1016/j.neuroimage.2018.04.025. Epub 2018 Apr 13.

引用本文的文献

本文引用的文献

3
Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.为人类连接组计划推进活体扩散 MRI 的极限
Neuroimage. 2013 Oct 15;80:220-33. doi: 10.1016/j.neuroimage.2013.05.078. Epub 2013 May 24.
4
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
8
A 64-channel 3T array coil for accelerated brain MRI.用于加速脑部 MRI 的 64 通道 3T 阵列线圈。
Magn Reson Med. 2013 Jul;70(1):248-58. doi: 10.1002/mrm.24427. Epub 2012 Jul 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验