Suppr超能文献

线性多尺度扩散磁共振成像数据建模:一种跨尺度描述各向异性结构特征的方法。

Linear multi-scale modeling of diffusion MRI data: A framework for characterization of oriented structures across length scales.

机构信息

A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.

出版信息

Hum Brain Mapp. 2023 Mar;44(4):1496-1514. doi: 10.1002/hbm.26143. Epub 2022 Dec 7.

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide increasingly sophisticated investigations of the human brain's structural connectome in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orientation distribution of diffusion within tissues over a range of length scales. In its original formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffusion response functions. Recent technological advances have enabled the use of ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellular water diffusion in the living human brain. To capture the complex diffusion time dependence of the signal within restricted water compartments, we expand upon the RSI approach to represent restricted water compartments with non-Gaussian response functions, in an extended analysis framework called linear multi-scale modeling (LMM). The LMM approach is designed to resolve length scale and orientation-specific information with greater specificity to tissue microstructure in the restricted and hindered compartments, while retaining the advantages of the RSI approach in its implementation as a linear inverse problem. Using multi-shell, multi-diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner equipped with 300 mT/m gradients, we demonstrate the ability of the LMM approach to distinguish different anatomical structures in the human brain and the potential to advance mapping of the human connectome through joint estimation of the fiber orientation distributions and compartment size characteristics.

摘要

扩散加权磁共振成像(DW-MRI)已经发展到可以更深入地研究人类大脑的结构连接组。限制谱成像(RSI)是一种重建组织内扩散方向分布的方法,可以在多个长度尺度上进行。在最初的形式中,RSI 将信号表示为一系列高斯扩散响应函数的频谱。最近的技术进步使得在人类 MRI 扫描仪上使用超高 b 值成为可能,从而提高了对活人大脑细胞内水扩散的灵敏度。为了捕捉受限水隔室内信号的复杂扩散时间依赖性,我们扩展了 RSI 方法,用非高斯响应函数来表示受限水隔室,这是一种称为线性多尺度建模(LMM)的扩展分析框架。LMM 方法旨在更具体地解析受限和受阻隔室内组织微观结构的长度尺度和方向特定信息,同时保留 RSI 方法作为线性反问题实现的优势。我们使用配备 300 mT/m 梯度的最先进的 3T MRI 扫描仪采集的多壳、多扩散时间 DW-MRI 数据,证明了 LMM 方法区分人类大脑不同解剖结构的能力,以及通过联合估计纤维方向分布和隔室大小特征来推进人类连接组图绘制的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/256b/9921225/4fded9e6ebfb/HBM-44-1496-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验