Theis Thomas, Truong Milton, Coffey Aaron M, Chekmenev Eduard Y, Warren Warren S
Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA.
Department of Radiology, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave South MCN AA-1105, Nashville, TN 37232, USA.
J Magn Reson. 2014 Nov;248:23-6. doi: 10.1016/j.jmr.2014.09.005. Epub 2014 Sep 28.
Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.
核自旋超极化克服了传统核磁共振(NMR)和磁共振成像(MRI)的灵敏度限制,但迄今为止所证明的最通用方法(动态核极化)在可扩展性、成本和复杂的仪器设计方面存在重大局限性。作为一种替代方法,通过仲氢在过渡金属催化剂上的可逆交换(SABRE)进行信号放大,可以使多种底物超极化,但迄今为止,该方案需要将样品转移到低磁场或非常强的射频辐射下。在此,我们展示了“高场SABRE的低辐射产生”(LIGHT-SABRE),它采用简单的脉冲序列和低功率沉积;它应该可在任何磁场下使用,并用于许多不同原子核的超极化。这种方法可以大幅降低生产超极化分子的成本和复杂性。