Suppr超能文献

用于患者指导的象形图增强系统评估:一项回忆研究。

Evaluation of a pictograph enhancement system for patient instruction: a recall study.

作者信息

Zeng-Treitler Qing, Perri Seneca, Nakamura Carlos, Kuang Jinqiu, Hill Brent, Bui Duy Duc An, Stoddard Gregory J, Bray Bruce E

机构信息

Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.

Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA College of Nursing, University of Utah, Salt Lake City, Utah, USA.

出版信息

J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1026-31. doi: 10.1136/amiajnl-2013-002330. Epub 2014 Jun 12.

Abstract

OBJECTIVE

We developed a novel computer application called Glyph that automatically converts text to sets of illustrations using natural language processing and computer graphics techniques to provide high quality pictographs for health communication. In this study, we evaluated the ability of the Glyph system to illustrate a set of actual patient instructions, and tested patient recall of the original and Glyph illustrated instructions.

METHODS

We used Glyph to illustrate 49 patient instructions representing 10 different discharge templates from the University of Utah Cardiology Service. 84 participants were recruited through convenience sampling. To test the recall of illustrated versus non-illustrated instructions, participants were asked to review and then recall a set questionnaires that contained five pictograph-enhanced and five non-pictograph-enhanced items.

RESULTS

The mean score without pictographs was 0.47 (SD 0.23), or 47% recall. With pictographs, this mean score increased to 0.52 (SD 0.22), or 52% recall. In a multivariable mixed effects linear regression model, this 0.05 mean increase was statistically significant (95% CI 0.03 to 0.06, p<0.001).

DISCUSSION

In our study, the presence of Glyph pictographs improved discharge instruction recall (p<0.001). Education, age, and English as first language were associated with better instruction recall and transcription.

CONCLUSIONS

Automated illustration is a novel approach to improve the comprehension and recall of discharge instructions. Our results showed a statistically significant in recall with automated illustrations. Subjects with no-colleague education and younger subjects appeared to benefit more from the illustrations than others.

摘要

目的

我们开发了一种名为Glyph的新型计算机应用程序,它利用自然语言处理和计算机图形技术自动将文本转换为插图集,以提供用于健康交流的高质量象形图。在本研究中,我们评估了Glyph系统为一组实际患者指导说明配图的能力,并测试了患者对原始指导说明和Glyph配图指导说明的记忆情况。

方法

我们使用Glyph为代表犹他大学心脏病科10种不同出院模板的49条患者指导说明配图。通过便利抽样招募了84名参与者。为了测试配图指导说明与未配图指导说明的记忆情况,要求参与者先查看然后回忆一组问卷,其中包含五个象形图增强项和五个非象形图增强项。

结果

没有象形图时的平均得分是0.47(标准差0.23),即47%的记忆率。有象形图时,平均得分提高到0.52(标准差0.22),即52%的记忆率。在多变量混合效应线性回归模型中,这0.05的平均增幅具有统计学意义(95%置信区间0.03至0.06,p<0.001)。

讨论

在我们的研究中,Glyph象形图的存在提高了出院指导说明的记忆率(p<0.001)。教育程度、年龄和以英语为第一语言与更好的指导说明记忆和抄写相关。

结论

自动配图是一种提高出院指导说明理解和记忆的新方法。我们的结果显示自动配图在记忆方面有统计学显著差异。没有同事教育背景的受试者和年轻受试者似乎比其他人从配图中受益更多。

相似文献

4
Automated illustration of patients instructions.患者说明的自动图示
AMIA Annu Symp Proc. 2012;2012:1158-67. Epub 2012 Nov 3.

引用本文的文献

本文引用的文献

1
Automated illustration of patients instructions.患者说明的自动图示
AMIA Annu Symp Proc. 2012;2012:1158-67. Epub 2012 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验