Gao Yi, Zhu Liang-Jia, Bouix Sylvain, Tannenbaum Allen
Department of Electrical and Computer Engineering and the Comprehensive Cancer Center, the University of Alabama at Birmingham; 1150 10th Avenue South, Birmingham, AL 35294.
Departments of Computer Science and Applied Mathematics/Statistics, Stony Brook University, Stony Brook, New York, 11794.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90342X. doi: 10.1117/12.2043282.
Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.
医学影像数据的纵向分析已成为许多疾病研究的核心。不幸的是,各种限制因素(研究设计、患者可及性、技术局限性)将数据采集限制在仅几个时间点,从而限制了对疾病/治疗连续进展的研究。能够对数据进行合理的时间插值可以带来更好的分析效果,例如对解剖结构变化进行直观的可视化展示,或者创建更多样本以改进统计分析。在这项工作中,我们使用最优质量传输(OMT)理论对医学图像数据,特别是形状数据的插值进行建模,该理论可以在两个时间点之间构建连续过渡,同时在过渡过程中保留“质量”(如图像强度、形状体积)。该理论甚至允许在时间上进行短时间的外推,并可能有助于预测短期治疗对解剖结构的影响或疾病进展。我们将所提出的方法应用于精神分裂症患者的海马体-杏仁核复合体、心房颤动患者的心脏以及创伤性脑损伤患者的全脑磁共振图像。