Suppr超能文献

一种用于量化和可视化图像集变化的线性最优传输框架。

A linear optimal transportation framework for quantifying and visualizing variations in sets of images.

作者信息

Wang Wei, Slepčev Dejan, Basu Saurav, Ozolek John A, Rohde Gustavo K

机构信息

Center for Bioimage Informatics, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 USA.

出版信息

Int J Comput Vis. 2013 Jan 1;101(2):254-269. doi: 10.1007/s11263-012-0566-z.

Abstract

Transportation-based metrics for comparing images have long been applied to analyze images, especially where one can interpret the pixel intensities (or derived quantities) as a distribution of 'mass' that can be transported without strict geometric constraints. Here we describe a new transportation-based framework for analyzing sets of images. More specifically, we describe a new transportation-related distance between pairs of images, which we denote as linear optimal transportation (LOT). The LOT can be used directly on pixel intensities, and is based on a linearized version of the Kantorovich-Wasserstein metric (an optimal transportation distance, as is the earth mover's distance). The new framework is especially well suited for computing all pairwise distances for a large database of images efficiently, and thus it can be used for pattern recognition in sets of images. In addition, the new LOT framework also allows for an isometric linear embedding, greatly facilitating the ability to visualize discriminant information in different classes of images. We demonstrate the application of the framework to several tasks such as discriminating nuclear chromatin patterns in cancer cells, decoding differences in facial expressions, galaxy morphologies, as well as sub cellular protein distributions.

摘要

长期以来,基于传输的图像比较指标一直被用于分析图像,特别是在人们可以将像素强度(或派生量)解释为一种“质量”分布的情况下,这种分布可以在没有严格几何约束的情况下进行传输。在此,我们描述一种用于分析图像集的新的基于传输的框架。更具体地说,我们描述了一种新的图像对之间与传输相关的距离,我们将其称为线性最优传输(LOT)。LOT可以直接用于像素强度,并且基于 Kantorovich-Wasserstein 度量(一种最优传输距离,如推土机距离)的线性化版本。这个新框架特别适合高效地计算大型图像数据库中所有图像对之间的距离,因此可用于图像集的模式识别。此外,新的LOT框架还允许进行等距线性嵌入,极大地促进了在不同类别的图像中可视化判别信息的能力。我们展示了该框架在多个任务中的应用,如区分癌细胞中的核染色质模式、解读面部表情差异、星系形态以及亚细胞蛋白质分布。

相似文献

5
EMBEDDING SIGNALS ON GRAPHS WITH UNBALANCED DIFFUSION EARTH MOVER'S DISTANCE.使用非平衡扩散推土机距离在图上嵌入信号
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:5647-5651. doi: 10.1109/icassp43922.2022.9746556. Epub 2022 Apr 27.
6
An optimal transportation approach for nuclear structure-based pathology.基于核结构的病理学最优传输方法。
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
10
Ocean mover's distance: using optimal transport for analysing oceanographic data.海洋移动距离:运用最优传输分析海洋学数据
Proc Math Phys Eng Sci. 2022 Jun;478(2262):20210875. doi: 10.1098/rspa.2021.0875. Epub 2022 Jun 22.

引用本文的文献

5
End-to-End Signal Classification in Signed Cumulative Distribution Transform Space.符号累积分布变换空间中的端到端信号分类
IEEE Trans Pattern Anal Mach Intell. 2024 Sep;46(9):5936-5950. doi: 10.1109/TPAMI.2024.3372455. Epub 2024 Aug 6.
8
Radon Cumulative Distribution Transform Subspace Modeling for Image Classification.用于图像分类的氡累积分布变换子空间建模
J Math Imaging Vis. 2021 Nov;63(9):1185-1203. doi: 10.1007/s10851-021-01052-0. Epub 2021 Aug 5.

本文引用的文献

4
An optimal transportation approach for nuclear structure-based pathology.基于核结构的病理学最优传输方法。
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
5
6
Automatic morphological classification of galaxy images.星系图像的自动形态分类。
Mon Not R Astron Soc. 2009 Nov 1;399(3):1367-1372. doi: 10.1111/j.1365-2966.2009.15366.x.
9
Linking Heterochromatin Protein 1 (HP1) to cancer progression.将异染色质蛋白1(HP1)与癌症进展联系起来。
Mutat Res. 2008 Dec 1;647(1-2):13-20. doi: 10.1016/j.mrfmmm.2008.09.007. Epub 2008 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验