Center for Bioimage Informatics, Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g., normal versus cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers.
从组织病理学显微镜图像中观察到的核形态和结构可以为一些良性和恶性组织病变提供重要的诊断线索。然而,对于许多诊断挑战来说,目前还没有关于核结构和形态的精确定量信息。这部分是由于缺乏从图像数据中量化这些差异的方法。我们描述了一种方法来描述和对比不同组织类型(正常、良性、癌症等)中核结构的分布。该方法基于使用最优传输(Kantorovich-Wasserstein)度量对不同细胞群中的染色质形态进行量化,结合 Fisher 判别分析和多维尺度技术。我们表明,最优传输度量能够测量相关的生物学信息,因为它能够自动确定一组核的类别(例如,正常与癌症)。我们表明,使用该度量获得的分类精度平均与使用一组先前描述的数值特征获得的精度一样好或更好。我们将我们的方法应用于外科病理学中的两个诊断挑战:一个在肝脏,一个在甲状腺。使用该技术自动计算的结果显示,肝癌和甲状腺癌中的核结构存在潜在的生物学相关差异。