Suppr超能文献

基于核结构的病理学最优传输方法。

An optimal transportation approach for nuclear structure-based pathology.

机构信息

Center for Bioimage Informatics, Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.

Abstract

Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g., normal versus cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers.

摘要

从组织病理学显微镜图像中观察到的核形态和结构可以为一些良性和恶性组织病变提供重要的诊断线索。然而,对于许多诊断挑战来说,目前还没有关于核结构和形态的精确定量信息。这部分是由于缺乏从图像数据中量化这些差异的方法。我们描述了一种方法来描述和对比不同组织类型(正常、良性、癌症等)中核结构的分布。该方法基于使用最优传输(Kantorovich-Wasserstein)度量对不同细胞群中的染色质形态进行量化,结合 Fisher 判别分析和多维尺度技术。我们表明,最优传输度量能够测量相关的生物学信息,因为它能够自动确定一组核的类别(例如,正常与癌症)。我们表明,使用该度量获得的分类精度平均与使用一组先前描述的数值特征获得的精度一样好或更好。我们将我们的方法应用于外科病理学中的两个诊断挑战:一个在肝脏,一个在甲状腺。使用该技术自动计算的结果显示,肝癌和甲状腺癌中的核结构存在潜在的生物学相关差异。

相似文献

1
An optimal transportation approach for nuclear structure-based pathology.基于核结构的病理学最优传输方法。
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
5
Identifying nuclear phenotypes using semi-supervised metric learning.使用半监督度量学习识别核表型。
Inf Process Med Imaging. 2011;22:398-410. doi: 10.1007/978-3-642-22092-0_33.
8
Automated colorectal cancer diagnosis for whole-slice histopathology.用于全切片组织病理学的自动化结直肠癌诊断
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):550-7. doi: 10.1007/978-3-642-33454-2_68.

引用本文的文献

6
The Radon Cumulative Distribution Transform and Its Application to Image Classification.氡累积分布变换及其在图像分类中的应用。
IEEE Trans Image Process. 2016 Feb;25(2):920-34. doi: 10.1109/TIP.2015.2509419. Epub 2015 Dec 17.

本文引用的文献

6
Monoclonal antibodies for cancer immunotherapy.用于癌症免疫治疗的单克隆抗体。
Lancet. 2009 Mar 21;373(9668):1033-40. doi: 10.1016/S0140-6736(09)60251-8.
7
Novel agents on the horizon for cancer therapy.癌症治疗领域即将出现的新型药物。
CA Cancer J Clin. 2009 Mar-Apr;59(2):111-37. doi: 10.3322/caac.20003.
8
Linking Heterochromatin Protein 1 (HP1) to cancer progression.将异染色质蛋白1(HP1)与癌症进展联系起来。
Mutat Res. 2008 Dec 1;647(1-2):13-20. doi: 10.1016/j.mrfmmm.2008.09.007. Epub 2008 Sep 24.
10
Molecular targeted therapies for breast cancer treatment.用于乳腺癌治疗的分子靶向疗法。
Breast Cancer Res. 2008;10(4):211. doi: 10.1186/bcr2112. Epub 2008 Jul 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验