Suppr超能文献

多尺度 3D 形状表示和分割及其在脑 MRI 中海马/尾状核提取中的应用。

Multiscale 3D shape representation and segmentation with applications to hippocampal/caudate extraction from brain MRI.

机构信息

Schools of Electrical & Computer Engineering and Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.

出版信息

Med Image Anal. 2012 Feb;16(2):374-85. doi: 10.1016/j.media.2011.10.002. Epub 2011 Nov 2.

Abstract

Extracting structure of interest from medical images is an important yet tedious work. Due to the image quality, the shape knowledge is widely used for assisting and constraining the segmentation process. In many previous works, shape knowledge was incorporated by first constructing a shape space from training cases, and then constraining the segmentation process to be within the learned shape space. However, such an approach has certain limitations due to the number of variations, eigen-shapemodes, that can be captured in the learned shape space. Moreover, small scale shape variances are usually overwhelmed by those in the large scale, and therefore the local shape information is lost. In this work, we present a multiscale representation for shapes with arbitrary topology, and a fully automatic method to segment the target organ/tissue from medical images using such multiscale shape information and local image features. First, we handle the problem of lacking eigen-shapemodes by providing a multiscale shape representation using the wavelet transform. Consequently, the shape variances existing in the training shapes captured by the statistical learning step are also represented at various scales. Note that by doing so, one can greatly enrich the eigen-shapemodes as well as capture small scale shape changes. Furthermore, in order to make full use of the training information, not only the shape but also the grayscale training images are utilized in a multi-atlas initialization procedure. By combining such initialization with the multiscale shape knowledge, we perform segmentation tests for challenging medical data sets where the target objects have low contrast and sharp corner structures, and demonstrate the statistically significant improvement obtained by employing such multiscale representation, in representing shapes as well as the overall shape based segmentation tasks.

摘要

从医学图像中提取感兴趣的结构是一项重要但繁琐的工作。由于图像质量的原因,形状知识被广泛用于辅助和约束分割过程。在许多以前的工作中,通过首先从训练样本中构建形状空间,然后将分割过程约束在学习到的形状空间内,来合并形状知识。然而,由于在学习到的形状空间中可以捕获的变化数量、特征形状模式的数量存在一定的局限性。此外,小尺度的形状变化通常会被大尺度的形状变化所掩盖,因此局部形状信息会丢失。在这项工作中,我们提出了一种任意拓扑形状的多尺度表示方法,以及一种使用这种多尺度形状信息和局部图像特征从医学图像中自动分割目标器官/组织的方法。首先,我们通过使用小波变换提供多尺度形状表示来处理特征形状模式不足的问题。因此,统计学习步骤中捕获的训练形状中的形状变化也在各种尺度上表示。需要注意的是,通过这样做,可以极大地丰富特征形状模式并捕捉小尺度的形状变化。此外,为了充分利用训练信息,不仅在多图谱初始化过程中使用形状,还使用灰度训练图像。通过将这种初始化与多尺度形状知识相结合,我们对具有低对比度和尖锐角结构的目标对象的挑战性医学数据集进行分割测试,并展示了通过采用这种多尺度表示所获得的统计学上显著的改进,在表示形状以及基于整体形状的分割任务方面都取得了显著的改进。

相似文献

3
Shape-driven 3D segmentation using spherical wavelets.使用球面小波的形状驱动3D分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):66-74. doi: 10.1007/11866565_9.
7
Prior knowledge driven multiscale segmentation of brain MRI.基于先验知识的脑磁共振成像多尺度分割
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):118-26. doi: 10.1007/978-3-540-75759-7_15.
8
Shape sparse representation for joint object classification and segmentation.用于联合目标分类和分割的形状稀疏表示。
IEEE Trans Image Process. 2013 Mar;22(3):992-1004. doi: 10.1109/TIP.2012.2226044. Epub 2012 Oct 22.
10
Groupwise segmentation with multi-atlas joint label fusion.基于多图谱联合标签融合的分组分割
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):711-8. doi: 10.1007/978-3-642-40811-3_89.

引用本文的文献

3
The bumps under the hippocampus.海马体下方的隆起。
Hum Brain Mapp. 2018 Jan;39(1):472-490. doi: 10.1002/hbm.23856. Epub 2017 Oct 23.
4
A Kalman Filtering Perspective for Multiatlas Segmentation.多图谱分割的卡尔曼滤波视角
SIAM J Imaging Sci. 2015;8(2):1007-1029. doi: 10.1137/130933423. Epub 2015 Apr 30.

本文引用的文献

2
A computational approach to edge detection.一种基于计算的边缘检测方法。
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
3
Focused attention on brain metastases.聚焦于脑转移瘤。
Lancet Oncol. 2009 Nov;10(11):1024. doi: 10.1016/S1470-2045(09)70320-1.
6
Localizing region-based active contours.基于区域的主动轮廓定位
IEEE Trans Image Process. 2008 Nov;17(11):2029-39. doi: 10.1109/TIP.2008.2004611.
7
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验