Suppr超能文献

加权二分网络的聚类分析:一种基于新的Copula函数的方法。

Cluster analysis of weighted bipartite networks: a new copula-based approach.

作者信息

Chessa Alessandro, Crimaldi Irene, Riccaboni Massimo, Trapin Luca

机构信息

IMT Institute for Advanced Studies, Lucca, Italy.

出版信息

PLoS One. 2014 Oct 10;9(10):e109507. doi: 10.1371/journal.pone.0109507. eCollection 2014.

Abstract

In this work we are interested in identifying clusters of "positional equivalent" actors, i.e. actors who play a similar role in a system. In particular, we analyze weighted bipartite networks that describes the relationships between actors on one side and features or traits on the other, together with the intensity level to which actors show their features. We develop a methodological approach that takes into account the underlying multivariate dependence among groups of actors. The idea is that positions in a network could be defined on the basis of the similar intensity levels that the actors exhibit in expressing some features, instead of just considering relationships that actors hold with each others. Moreover, we propose a new clustering procedure that exploits the potentiality of copula functions, a mathematical instrument for the modelization of the stochastic dependence structure. Our clustering algorithm can be applied both to binary and real-valued matrices. We validate it with simulations and applications to real-world data.

摘要

在这项工作中,我们感兴趣的是识别“位置等效”参与者的集群,即那些在系统中扮演类似角色的参与者。具体而言,我们分析加权二分网络,该网络描述了一方参与者与另一方特征或特质之间的关系,以及参与者展现其特征的强度水平。我们开发了一种方法,该方法考虑了参与者群体之间潜在的多变量依赖性。其理念是,网络中的位置可以基于参与者在表达某些特征时展现出的相似强度水平来定义,而不仅仅是考虑参与者之间的关系。此外,我们提出了一种新的聚类程序,该程序利用了Copula函数的潜力,Copula函数是一种用于随机依赖结构建模的数学工具。我们的聚类算法可应用于二元矩阵和实值矩阵。我们通过模拟和对实际数据的应用来验证它。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e6/4193785/0124861145bf/pone.0109507.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验