Suppr超能文献

高效推断二分网络中的社区结构。

Efficiently inferring community structure in bipartite networks.

作者信息

Larremore Daniel B, Clauset Aaron, Jacobs Abigail Z

机构信息

Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA and Santa Fe Institute, Santa Fe, New Mexico 87501, USA and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012805. doi: 10.1103/PhysRevE.90.012805. Epub 2014 Jul 10.

Abstract

Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing approaches to bipartite community detection have drawbacks, including implicit parameter choices, loss of information through one-mode projections, and lack of interpretability. Here we solve the community detection problem for bipartite networks by formulating a bipartite stochastic block model, which explicitly includes vertex type information and may be trivially extended to k-partite networks. This bipartite stochastic block model yields a projection-free and statistically principled method for community detection that makes clear assumptions and parameter choices and yields interpretable results. We demonstrate this model's ability to efficiently and accurately find community structure in synthetic bipartite networks with known structure and in real-world bipartite networks with unknown structure, and we characterize its performance in practical contexts.

摘要

二分网络是一种常见的网络数据类型,其中存在两种类型的顶点,并且只有不同类型的顶点才能相连。虽然二分网络与单分网络一样呈现出社区结构,但现有的二分社区检测方法存在缺陷,包括隐含的参数选择、通过单模投影导致的信息丢失以及缺乏可解释性。在这里,我们通过构建一个二分随机块模型来解决二分网络的社区检测问题,该模型明确包含顶点类型信息,并且可以很容易地扩展到k分网络。这个二分随机块模型产生了一种无投影且基于统计原则的社区检测方法,该方法做出了明确的假设和参数选择,并产生可解释的结果。我们展示了该模型在具有已知结构的合成二分网络和具有未知结构的真实世界二分网络中高效准确地找到社区结构的能力,并在实际环境中刻画了其性能。

相似文献

1
Efficiently inferring community structure in bipartite networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012805. doi: 10.1103/PhysRevE.90.012805. Epub 2014 Jul 10.
2
Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question.
IEEE Trans Netw Sci Eng. 2021 Oct-Dec;8(4):3019-3033. doi: 10.1109/tnse.2021.3086508. Epub 2021 Jun 4.
3
Latent geometry of bipartite networks.
Phys Rev E. 2017 Mar;95(3-1):032309. doi: 10.1103/PhysRevE.95.032309. Epub 2017 Mar 8.
4
Community detection in bipartite networks with stochastic block models.
Phys Rev E. 2020 Sep;102(3-1):032309. doi: 10.1103/PhysRevE.102.032309.
5
Evolutionary method for finding communities in bipartite networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066120. doi: 10.1103/PhysRevE.83.066120. Epub 2011 Jun 30.
6
Efficient Detection of Communities in Biological Bipartite Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):258-271. doi: 10.1109/TCBB.2017.2765319. Epub 2017 Nov 22.
7
Fractal and multifractal analyses of bipartite networks.
Sci Rep. 2017 Mar 31;7:45588. doi: 10.1038/srep45588.
8
Spectral coarse graining for random walks in bipartite networks.
Chaos. 2013 Mar;23(1):013104. doi: 10.1063/1.4773823.
9
Module identification in bipartite and directed networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036102. doi: 10.1103/PhysRevE.76.036102. Epub 2007 Sep 6.

引用本文的文献

1
Neighbor-Enhanced Link Prediction in Bipartite Networks.
Entropy (Basel). 2025 May 25;27(6):556. doi: 10.3390/e27060556.
2
Complements and competitors: Examining technological co-diffusion and relatedness on a collaborative coding platform.
PNAS Nexus. 2024 Dec 10;3(12):pgae549. doi: 10.1093/pnasnexus/pgae549. eCollection 2024 Dec.
3
The making of the oral microbiome in Agta hunter-gatherers.
Evol Hum Sci. 2023 May 22;5:e13. doi: 10.1017/ehs.2023.9. eCollection 2023.
4
Community detection in large hypergraphs.
Sci Adv. 2023 Jul 14;9(28):eadg9159. doi: 10.1126/sciadv.adg9159. Epub 2023 Jul 12.
5
The collective vs individual nature of mountaineering: a network and simplicial approach.
Appl Netw Sci. 2022;7(1):62. doi: 10.1007/s41109-022-00503-w. Epub 2022 Sep 4.
6
An empirical Bayes approach to stochastic blockmodels and graphons: shrinkage estimation and model selection.
PeerJ Comput Sci. 2022 Jul 6;8:e1006. doi: 10.7717/peerj-cs.1006. eCollection 2022.
7
Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question.
IEEE Trans Netw Sci Eng. 2021 Oct-Dec;8(4):3019-3033. doi: 10.1109/tnse.2021.3086508. Epub 2021 Jun 4.
8
Graph-based open-ended survey on concerns related to COVID-19.
PLoS One. 2021 Aug 13;16(8):e0256212. doi: 10.1371/journal.pone.0256212. eCollection 2021.
10
Generative hypergraph clustering: From blockmodels to modularity.
Sci Adv. 2021 Jul 7;7(28). doi: 10.1126/sciadv.abh1303. Print 2021 Jul.

本文引用的文献

1
Parsimonious module inference in large networks.
Phys Rev Lett. 2013 Apr 5;110(14):148701. doi: 10.1103/PhysRevLett.110.148701.
2
Analyzing Recurrent Event Data With Informative Censoring.
J Am Stat Assoc. 2001;96(455). doi: 10.1198/016214501753209031.
3
A network approach to analyzing highly recombinant malaria parasite genes.
PLoS Comput Biol. 2013;9(10):e1003268. doi: 10.1371/journal.pcbi.1003268. Epub 2013 Oct 10.
5
Predicting human preferences using the block structure of complex social networks.
PLoS One. 2012;7(9):e44620. doi: 10.1371/journal.pone.0044620. Epub 2012 Sep 11.
6
Exploring the structural regularities in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056111. doi: 10.1103/PhysRevE.84.056111. Epub 2011 Nov 28.
7
Efficient and principled method for detecting communities in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036103. doi: 10.1103/PhysRevE.84.036103. Epub 2011 Sep 8.
8
Inference and phase transitions in the detection of modules in sparse networks.
Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2.
9
Mixed Membership Stochastic Blockmodels.
J Mach Learn Res. 2008 Sep;9:1981-2014.
10
Stochastic blockmodels and community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验