Radek Andreas, Krumbach Karin, Gätgens Jochem, Wendisch Volker F, Wiechert Wolfgang, Bott Michael, Noack Stephan, Marienhagen Jan
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany.
Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld D-33615, Germany.
J Biotechnol. 2014 Dec 20;192 Pt A:156-60. doi: 10.1016/j.jbiotec.2014.09.026. Epub 2014 Oct 7.
Biomass-derived d-xylose represents an economically interesting substrate for the sustainable microbial production of value-added compounds. The industrially important platform organism Corynebacterium glutamicum has already been engineered to grow on this pentose as sole carbon and energy source. However, all currently described C. glutamicum strains utilize d-xylose via the commonly known isomerase pathway that leads to a significant carbon loss in the form of CO2, in particular, when aiming for the synthesis of α-ketoglutarate and its derivatives (e.g. l-glutamate). Driven by the motivation to engineer a more carbon-efficient C. glutamicum strain, we functionally integrated the Weimberg pathway from Caulobacter crescentus in C. glutamicum. This five-step pathway, encoded by the xylXABCD-operon, enabled a recombinant C. glutamicum strain to utilize d-xylose in d-xylose/d-glucose mixtures. Interestingly, this strain exhibited a tri-phasic growth behavior and transiently accumulated d-xylonate during d-xylose utilization in the second growth phase. However, this intermediate of the implemented oxidative pathway was re-consumed in the third growth phase leading to more biomass formation. Furthermore, C. glutamicum pEKEx3-xylXABCDCc was also able to grow on d-xylose as sole carbon and energy source with a maximum growth rate of μmax=0.07±0.01h(-1). These results render C. glutamicum pEKEx3-xylXABCDCc a promising starting point for the engineering of efficient production strains, exhibiting only minimal carbon loss on d-xylose containing substrates.
生物质衍生的 D-木糖是可持续微生物生产增值化合物的一种具有经济吸引力的底物。工业上重要的模式生物谷氨酸棒杆菌已经经过改造,能够以这种戊糖作为唯一碳源和能源生长。然而,目前所有描述的谷氨酸棒杆菌菌株都通过众所周知的异构酶途径利用 D-木糖,这会导致以二氧化碳形式的大量碳损失,特别是在旨在合成α-酮戊二酸及其衍生物(如 L-谷氨酸)时。出于构建更具碳效率的谷氨酸棒杆菌菌株的动机,我们在谷氨酸棒杆菌中功能整合了来自新月柄杆菌的温伯格途径。由 xylXABCD 操纵子编码的这五步途径使重组谷氨酸棒杆菌菌株能够在 D-木糖/D-葡萄糖混合物中利用 D-木糖。有趣的是,该菌株表现出三相生长行为,并在第二个生长阶段利用 D-木糖期间短暂积累 D-木糖酸盐。然而,所实施的氧化途径的这种中间产物在第三个生长阶段被重新消耗,导致更多生物量形成。此外,谷氨酸棒杆菌 pEKEx3-xylXABCDCc 也能够以 D-木糖作为唯一碳源和能源生长,最大生长速率为 μmax = 0.07±0.01h(-1)。这些结果使谷氨酸棒杆菌 pEKEx3-xylXABCDCc 成为构建高效生产菌株的一个有前途的起点,在含 D-木糖的底物上仅表现出最小的碳损失。