Hofer Katharina, Schwardmann Lynn S, Youn Jung-Won, Wendisch Volker F, Takors Ralf
Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany.
Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany.
Microorganisms. 2025 Jul 8;13(7):1606. doi: 10.3390/microorganisms13071606.
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate how a single amino acid substitution can dramatically transform cellular sugar transport capacity. By combining rational strain engineering with continuous adaptive laboratory evolution, we evolved a -deficient strain in glucose-xylose mixtures for 600 h under consistent selection pressure. Whole-genome sequencing revealed a remarkable finding: a single point mutation; exchanging proline for alanine in the -inositol/proton symporter IolT1 was sufficient to boost glucose uptake by 83% and xylose uptake by 20%, while increasing the overall growth rate by 35%. This mutation, located in a highly conserved domain, likely disrupts an alpha helical structure, thus enhancing transport function. Reverse engineering confirmed that this single change alone reproduces the evolved phenotype, representing the first report of an engineered IolT1 variant in PTS-independent that features significantly enhanced substrate uptake. These results both provide an immediately applicable engineering target for biorefinery applications and demonstrate the power of evolutionary approaches to identify non-intuitive solutions to complex metabolic engineering challenges.
木质纤维素生物质中葡萄糖和木糖的高效协同利用仍然是限制可持续生物精炼厂可行性的关键瓶颈。虽然[具体菌株名称]因其稳健性已成为一种有前景的工业宿主,但混合糖协同利用仍需进一步改进。在此,我们展示了单个氨基酸替换如何显著改变细胞的糖转运能力。通过将理性菌株工程与连续适应性实验室进化相结合,我们在一致的选择压力下,在葡萄糖 - 木糖混合物中对一株缺乏[具体物质]的[菌株名称]菌株进行了600小时的进化。全基因组测序揭示了一个显著发现:一个单点突变,即肌醇/质子同向转运体IolT1中的脯氨酸被丙氨酸替换,足以使葡萄糖摄取提高83%,木糖摄取提高20%,同时使总体生长速率提高35%。这个位于高度保守结构域的突变可能破坏了一个α螺旋结构,从而增强了转运功能。逆向工程证实,仅这一单一变化就能重现进化后的表型,这代表了在不依赖磷酸转移酶系统(PTS)的[菌株名称]中工程化IolT1变体首次报道,其具有显著增强的底物摄取能力。这些结果既为生物精炼厂应用提供了一个可立即应用的工程靶点,也展示了进化方法在识别复杂代谢工程挑战的非直观解决方案方面的力量。