Suppr超能文献

理解 D-木酮酸的积累:更好的代谢工程方法的基石。

Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches.

机构信息

Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin City, Gyeonggi Province, 17058, South Korea.

Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

出版信息

Appl Microbiol Biotechnol. 2021 Jul;105(13):5309-5324. doi: 10.1007/s00253-021-11410-y. Epub 2021 Jul 3.

Abstract

The xylose oxidative pathway (XOP) has been engineered in microorganisms for the production of a wide range of industrially relevant compounds. However, the performance of metabolically engineered XOP-utilizing microorganisms is typically hindered by D-xylonic acid accumulation. It acidifies the media and perturbs cell growth due to toxicity, thus curtailing enzymatic activity and target product formation. Fortunately, from the growing portfolio of genetic tools, several strategies that can be adapted for the generation of efficient microbial cell factories have been implemented to address D-xylonic acid accumulation. This review centers its discussion on the causes of D-xylonic acid accumulation and how to address it through different engineering and synthetic biology techniques with emphasis given on bacterial strains. In the first part of this review, the ability of certain microorganisms to produce and tolerate D-xylonic acid is also tackled as an important aspect in developing efficient microbial cell factories. Overall, this review could shed some insights and clarity to those working on XOP in bacteria and its engineering for the development of industrially applicable product-specialist strains. KEY POINTS: D-Xylonic acid accumulation is attributed to the overexpression of xylose dehydrogenase concomitant with basal or inefficient expression of enzymes involved in D-xylonic acid assimilation. Redox imbalance and insufficient cofactors contribute to D-xylonic acid accumulation. Overcoming D-xylonic acid accumulation can increase product formation among engineered strains. Engineering strategies involving enzyme engineering, evolutionary engineering, coutilization of different sugar substrates, and synergy of different pathways could potentially address D-xylonic acid accumulation.

摘要

木糖氧化途径 (XOP) 已在微生物中进行工程改造,以生产广泛的工业相关化合物。然而,代谢工程化的 XOP 利用微生物的性能通常受到 D-木酮酸积累的阻碍。由于毒性,它会使培养基酸化并扰乱细胞生长,从而削弱酶活性和目标产物的形成。幸运的是,从不断增长的遗传工具组合中,可以实施几种策略来生成高效的微生物细胞工厂,以解决 D-木酮酸积累的问题。本综述的讨论重点是 D-木酮酸积累的原因,以及如何通过不同的工程和合成生物学技术来解决它,重点是细菌菌株。在本综述的第一部分,还探讨了某些微生物产生和耐受 D-木酮酸的能力,这是开发高效微生物细胞工厂的一个重要方面。总的来说,本综述可以为那些从事细菌 XOP 及其工程化以开发工业适用的产品专业菌株的工作者提供一些见解和清晰的认识。关键点:D-木酮酸的积累归因于木酮糖脱氢酶的过表达,同时与 D-木酮酸同化相关的酶的基础或低效表达有关。氧化还原失衡和不足的辅助因子导致 D-木酮酸的积累。克服 D-木酮酸的积累可以增加工程化菌株的产物形成。涉及酶工程、进化工程、不同糖底物的共利用以及不同途径的协同作用的工程策略可能有助于解决 D-木酮酸的积累问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验