Suppr超能文献

在压力条件下暴露于二氧化碳会影响模式硫酸盐还原菌希登伯勒脱硫弧菌的代谢和应激反应。

CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough.

作者信息

Wilkins Michael J, Hoyt David W, Marshall Matthew J, Alderson Paul A, Plymale Andrew E, Markillie L Meng, Tucker Abby E, Walter Eric D, Linggi Bryan E, Dohnalkova Alice C, Taylor Ron C

机构信息

Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA ; Department of Microbiology, School of Earth Sciences, The Ohio State University Columbus, OH, USA.

Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA.

出版信息

Front Microbiol. 2014 Sep 25;5:507. doi: 10.3389/fmicb.2014.00507. eCollection 2014.

Abstract

Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using (13)C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least 4 h, and at 80 bar CO2 for 2 h. The fraction of dead cells increased rapidly after 4 h at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

摘要

地质二氧化碳(CO₂)封存会引发深部地下环境中的物理和地球化学变化,从而影响原生微生物的活动。我们使用一系列基因组和动力学测量方法,评估了加压CO₂对模式硫酸盐还原微生物——普通脱硫弧菌的综合影响。利用新型高压核磁共振(NMR)时间序列测量方法,以¹³C-乳酸盐追踪普通脱硫弧菌的代谢情况。我们发现在10巴、25巴、50巴和80巴的CO₂压力下呼吸作用停止。以氮气作为加压气体的对照实验对微生物呼吸作用没有负面影响,这可从硫酸盐还原为硫化物的情况推断得出。补充性的加压分批培养和荧光显微镜测量结果支持了核磁共振观测结果,并表明在50巴CO₂条件下至少4小时以及在80巴CO₂条件下2小时,不进行呼吸作用的细胞大多仍具活力。在80巴CO₂条件下4小时后,死细胞比例迅速增加。对经CO₂培养的生物质的mRNA转录本进行转录组学(RNA测序)测量表明,在高压下暴露于CO₂后,细胞上调了某些氨基酸(亮氨酸、异亮氨酸)的产生,这可能是一般应激反应的一部分。在RNA测序数据中还发现了其他一些了解较少的应激反应证据,这表明虽然加压CO₂会严重限制普通脱硫弧菌细胞的生长和呼吸作用,但在高达80巴CO₂的压力下,生物质仍保留完整的细胞膜。这些数据共同表明,在许多深部地下环境中,CO₂的地质封存可能会对硫酸盐还原速率产生重大影响,而这种代谢是关键的呼吸过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c299/4174866/bacfa6dfff5b/fmicb-05-00507-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验