Sereni Maria Isabella, Baldelli Elisa, Gambara Guido, Deng Jianghong, Zanotti Laura, Bandiera Elisabetta, Bignotti Eliana, Ragnoli Monica, Tognon Germana, Ravaggi Antonella, Meani Francesco, Memo Maurizio, Angioli Roberto, Liotta Lance A, Pecorelli Sergio L, Petricoin Emanuel, Pierobon Mariaelena
Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
Proteomics. 2015 Jan;15(2-3):365-73. doi: 10.1002/pmic.201400214.
Epithelial ovarian carcinoma (EOC) is a deadly disease, with a 5-year survival of 30%. The aim of the study was to perform broad-scale protein signaling activation mapping to evaluate if EOC can be redefined based on activated protein signaling network architecture rather than histology. Tumor cells were isolated using laser capture microdissection (LCM) from 72 EOCs. Tumors were classified as serous (n = 38), endometrioid (n = 13), mixed (n = 8), clear cell (CCC; n = 7), and others (n = 6). LCM tumor cells were lysed and subjected to reverse-phase protein microarray to measure the expression/activation level of 117 protein drug targets. Unsupervised hierarchical clustering analysis was utilized to explore the overall signaling network. ANOVA was used to detect significant differences among the groups (p < 0.05). Regardless of histology, unsupervised analysis revealed five pathway-driven clusters. When the EOC histotypes were compared by ANOVA, only CCC showed a distinct signaling network, with activation of EGFR, Syk, HER2/ErbB2, and SHP2 (p = 0.0007, p = 0.0021, p < 0.0001, and p = 0.0410, respectively). The histological classification of EOC fails to adequately describe the underpinning protein signaling network. Nevertheless, CCC presents unique signaling characteristics compared to the other histotypes. EOC may need to be characterized by functional signaling activation mapping rather than pure histology.
上皮性卵巢癌(EOC)是一种致命疾病,5年生存率为30%。本研究的目的是进行大规模蛋白质信号激活图谱分析,以评估EOC是否可以基于激活的蛋白质信号网络结构而非组织学进行重新定义。使用激光捕获显微切割(LCM)从72例EOC中分离肿瘤细胞。肿瘤分为浆液性(n = 38)、子宫内膜样(n = 13)、混合型(n = 8)、透明细胞(CCC;n = 7)和其他类型(n = 6)。对LCM肿瘤细胞进行裂解,并进行反相蛋白质微阵列分析,以测量117种蛋白质药物靶点的表达/激活水平。采用无监督层次聚类分析来探索整体信号网络。使用方差分析检测组间的显著差异(p < 0.05)。无论组织学类型如何,无监督分析均揭示了五个由通路驱动的簇。当通过方差分析比较EOC组织学类型时,只有CCC显示出独特的信号网络,其EGFR、Syk、HER2/ErbB2和SHP2激活(分别为p = 0.0007、p = 0.0021、p < 0.0001和p = 0.0410)。EOC的组织学分类未能充分描述潜在的蛋白质信号网络。然而,与其他组织学类型相比,CCC呈现出独特的信号特征。EOC可能需要通过功能性信号激活图谱而非单纯的组织学来进行特征描述。