Suppr超能文献

胸腺素-β4/丝切蛋白交换导致肌动蛋白丝聚合的结构基础。

Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization.

作者信息

Xue Bo, Leyrat Cedric, Grimes Jonathan M, Robinson Robert C

机构信息

Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673;

Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Oxford, OX3 7BN, United Kingdom;

出版信息

Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4596-605. doi: 10.1073/pnas.1412271111. Epub 2014 Oct 13.

Abstract

Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.

摘要

胸腺素-β4(Tβ4)和丝切蛋白是高等真核生物细胞内维持单体肌动蛋白(G-肌动蛋白)库的两种主要隔离蛋白。Tβ4可防止G-肌动蛋白连接到细丝上,而丝切蛋白:肌动蛋白仅支持带刺末端的延伸。在此,我们报告了两种Tβ4:肌动蛋白结构。第一种结构表明,Tβ4有两个螺旋,它们结合在G-肌动蛋白的带刺面和尖端面,阻止结合的G-肌动蛋白掺入细丝。第二种结构显示G-肌动蛋白上有一个更开放的核苷酸结合裂缝,这是丝切蛋白:肌动蛋白结构的典型特征,同时Tβ4 C末端螺旋相互作用受到破坏。这些结构,结合生化分析和分子动力学模拟,表明Tβ4和丝切蛋白之间结合的肌动蛋白的交换涉及空间和变构成分。丝切蛋白对肌动蛋白构象状态的敏感性表明在细丝延伸过程中丝切蛋白解离存在类似的变构机制。

相似文献

1
Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4596-605. doi: 10.1073/pnas.1412271111. Epub 2014 Oct 13.
2
Profilin promotes barbed-end actin filament assembly without lowering the critical concentration.
J Biol Chem. 1999 Dec 24;274(52):36963-72. doi: 10.1074/jbc.274.52.36963.
3
Structural basis of actin sequestration by thymosin-beta4: implications for WH2 proteins.
EMBO J. 2004 Sep 15;23(18):3599-608. doi: 10.1038/sj.emboj.7600372. Epub 2004 Aug 26.
5
How profilin promotes actin filament assembly in the presence of thymosin beta 4.
Cell. 1993 Dec 3;75(5):1007-14. doi: 10.1016/0092-8674(93)90544-z.
6
Thymosin beta4: actin regulation and more.
Ann N Y Acad Sci. 2007 Sep;1112:76-85. doi: 10.1196/annals.1415.008.
8
Competition for delivery of profilin-actin to barbed ends limits the rate of formin-mediated actin filament elongation.
J Biol Chem. 2020 Apr 3;295(14):4513-4525. doi: 10.1074/jbc.RA119.012000. Epub 2020 Feb 19.
10
Structure, function, and evolution of the beta-thymosin/WH2 (WASP-Homology2) actin-binding module.
Ann N Y Acad Sci. 2007 Sep;1112:67-75. doi: 10.1196/annals.1415.037.

引用本文的文献

1
Morphological and Electrical Properties of Proteinoid-Actin Networks.
ACS Omega. 2025 Jan 27;10(5):4952-4977. doi: 10.1021/acsomega.4c10488. eCollection 2025 Feb 11.
2
Mechanisms and therapeutic potential of disulphidptosis in cancer.
Cell Prolif. 2025 Jan;58(1):e13752. doi: 10.1111/cpr.13752. Epub 2024 Oct 1.
4
Thymosin β and β Expression in Human Organs during Development: A Review.
Cells. 2024 Jun 27;13(13):1115. doi: 10.3390/cells13131115.
5
Thermosensory Spiking Activity of Proteinoid Microspheres Cross-Linked by Actin Filaments.
Langmuir. 2024 Jun 18;40(24):12649-12670. doi: 10.1021/acs.langmuir.4c01107. Epub 2024 Jun 5.
6
Archaeal actins and the origin of a multi-functional cytoskeleton.
J Bacteriol. 2024 Mar 21;206(3):e0034823. doi: 10.1128/jb.00348-23. Epub 2024 Feb 23.
8
Actin polymerization and depolymerization in developing vertebrates.
Front Physiol. 2023 Sep 8;14:1213668. doi: 10.3389/fphys.2023.1213668. eCollection 2023.
9
The platelet transcriptome and proteome in Alzheimer's disease and aging: an exploratory cross-sectional study.
Front Mol Biosci. 2023 Jun 30;10:1196083. doi: 10.3389/fmolb.2023.1196083. eCollection 2023.
10
Multiomics analysis reveals the mechanical stress-dependent changes in trabecular meshwork cytoskeletal-extracellular matrix interactions.
Front Cell Dev Biol. 2022 Sep 13;10:874828. doi: 10.3389/fcell.2022.874828. eCollection 2022.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
4
Guardians of the actin monomer.
Eur J Cell Biol. 2013 Oct-Nov;92(10-11):316-32. doi: 10.1016/j.ejcb.2013.10.012. Epub 2013 Nov 4.
5
Interaction of profilin with the barbed end of actin filaments.
Biochemistry. 2013 Sep 17;52(37):6456-66. doi: 10.1021/bi400682n. Epub 2013 Aug 30.
6
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.
Science. 2012 Jun 1;336(6085):1164-8. doi: 10.1126/science.1218062.
7
How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly.
EMBO J. 2012 Feb 15;31(4):1000-13. doi: 10.1038/emboj.2011.461. Epub 2011 Dec 23.
9
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
10
Direct visualization of secondary structures of F-actin by electron cryomicroscopy.
Nature. 2010 Oct 7;467(7316):724-8. doi: 10.1038/nature09372. Epub 2010 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验