Suppr超能文献

解析依赖于肌动蛋白结构的丝切蛋白优先协同结合。

Deciphering the actin structure-dependent preferential cooperative binding of cofilin.

机构信息

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.

Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, United Kingdom.

出版信息

Elife. 2024 Aug 2;13:RP95257. doi: 10.7554/eLife.95257.

Abstract

The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.

摘要

细胞松弛素和肌动蛋白纤维簇向肌动蛋白纤维的尖端侧优先和协同结合的机制仍不清楚。为了解决这个问题,我们基于现有的丝状肌动蛋白(F-肌动蛋白)和 C-肌动蛋白(细胞松弛素被排除在肌动蛋白丝中)结构进行了主成分分析,并与单体 G-肌动蛋白进行了比较。结果强烈表明,C-肌动蛋白,而不是 F-ADP-肌动蛋白,代表了细胞松弛素结合偏好的有利结构。高速原子力显微镜研究表明,在肌动蛋白纤维的尖端侧,靠近细胞松弛素簇的缩短裸半螺旋包含的肌动蛋白单体比正常螺旋少。缩短裸半螺旋内相同长螺距链上两个相邻肌动蛋白单体之间的平均轴向距离(MAD)比典型螺旋中的 MAD 长(5.0-6.3nm)(4.3-5.6nm)。通过与脂质膜更强的附着实现的螺旋扭曲过程中的扭转运动的抑制,导致对细胞松弛素结合和簇形成的抑制比溶液中存在无机磷酸盐(Pi)更为明显。F-ADP-肌动蛋白表现出比 F-ADP.Pi-肌动蛋白更多的自然超螺旋半螺旋,这解释了为什么 Pi 以可变螺旋扭曲抑制细胞松弛素与 F-肌动蛋白的结合。我们提出,在较短的裸露螺旋扭曲中,无论是受热波动影响还是由细胞松弛素簇变构诱导,单体都表现出类似于 C-肌动蛋白样结构的特征,具有较长的 MAD,从而导致细胞松弛素的优先和协同结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2983/11296705/6bc0288a19ac/elife-95257-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验