Department of Management.
Department of Management and Entrepreneurship, Kelley School of Business, Indiana University.
J Appl Psychol. 2015 Mar;100(2):431-49. doi: 10.1037/a0038047. Epub 2014 Oct 13.
Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions.
效应量信息对于科学事业至关重要,并且在科学过程中扮演着越来越重要的角色。我们从 1980 年到 2010 年,从《应用心理学杂志》和《人事心理学杂志》中提取了 147328 个相关数据,并开发了一个层级分类变量,以产生总体水平、20 个常见研究领域以及更精细粒度的通用水平的经验效应量基准。结果表明,通常对效应量的小、中、大的解释和分类与该领域的发现几乎没有相似之处,因为效应量的分布在大约 Cohen(1988)所推测值的一半到三分之一处呈现三分位数分区。我们的结果提供了可用于研究计划和设计目的的信息,例如生成更明智的非零假设,并相应地估计统计功效和规划样本量。我们还提供了有关理解特定研究中发现的效应量与其他研究相比的相对重要性的信息,以及给定更大的效应量表明对现象有更好的理解,哪些研究领域已经取得了更多或更少的进展。此外,我们的研究还提供了关于调节效应调查可能更有成效的研究领域的信息,并提供了可能有助于实施贝叶斯分析的信息。最后,我们的研究提供了从业者可以用来评估各种干预类型的相对有效性的信息。