Campbell Bruce C V, Yassi Nawaf, Ma Henry, Sharma Gagan, Salinas Simon, Churilov Leonid, Meretoja Atte, Parsons Mark W, Desmond Patricia M, Lansberg Maarten G, Donnan Geoffrey A, Davis Stephen M
Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Radiology, Royal Melbourne Hospital, Melbourne, Australia.
Int J Stroke. 2015 Jan;10(1):51-4. doi: 10.1111/ijs.12381. Epub 2014 Oct 16.
Advanced imaging may refine patient selection for ischemic stroke treatment but delays to acquire and process the imaging have limited implementation.
We examined the feasibility of imaging selection in clinical practice using fully automated software in the EXTEND trial program.
CTP and perfusion-diffusion MRI data were processed using fully-automated software to generate a yes/no 'mismatch' classification that determined eligibility for trial therapies. The technical failure/mismatch classification error rate and time to image and treat with CT vs. MR-based selection were examined.
In a consecutive series of 776 patients from five sites over six-months the technical failure rate of CTP acquisition/processing (uninterpretable maps) was 3·4% (26/776, 95%CI 2·2-4·9%). Mismatch classification was overruled by expert review in an additional 9·0% (70/776, 95%CI 7·1-11·3%) due to artifactual 'perfusion lesion'. In 154 consecutive patients at one site, median additional time to acquire CTP after non-contrast CT was 6·5 min. Subsequent RAPID processing time varied from 3-10 min across 20 trial centers (median 5 min 20 s). In the EXTEND trial, door-to-needle times in patients randomized on the basis of CTP (n = 47) were median 78 min shorter than MRI-selected (n = 16) patients (P < 0·001).
Automated CTP-based mismatch selection is rapid, robust in clinical practice, and associated with faster treatment decisions than MRI. This technological advance has the potential to improve the standardization and reproducibility of interpretation of advanced imaging and extend use to practice settings beyond highly specialized academic centers.
先进的影像学检查可能会优化缺血性卒中治疗的患者选择,但获取和处理影像的延迟限制了其应用。
我们在EXTEND试验项目中使用全自动软件检验了临床实践中影像选择的可行性。
使用全自动软件处理CT灌注成像(CTP)和灌注-扩散加权磁共振成像(MRI)数据,以生成“匹配/不匹配”的是/否分类,从而确定试验性治疗的 eligibility。研究了技术失败/不匹配分类错误率以及基于CT与基于MR的选择进行成像和治疗的时间。
在6个月内来自5个地点的连续776例患者中,CTP采集/处理的技术失败率(无法解读的图像)为3.4%(26/776,95%CI 2.2-4.9%)。由于人为的“灌注病变”,另外9.0%(70/776,95%CI 7.1-11.3%)的不匹配分类被专家审查推翻。在一个地点的154例连续患者中,非增强CT后获取CTP的中位额外时间为6.5分钟。随后在20个试验中心,RAPID处理时间从3到10分钟不等(中位时间5分20秒)。在EXTEND试验中,基于CTP随机分组的患者(n = 47)从入院到穿刺的时间比基于MRI选择的患者(n = 16)中位短78分钟(P < 0.001)。
基于CTP的自动不匹配选择快速、在临床实践中可靠,并且与MRI相比能更快做出治疗决策。这一技术进步有可能提高先进影像学解释的标准化和可重复性,并将其应用扩展到高度专业化学术中心以外的实践环境。