Green David W, Goto Tazuko K, Kim Kye-Seong, Jung Han-Sung
Department of Oral Biosciences, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, People's Republic of China.
Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, People's Republic of China.
J R Soc Interface. 2014 Dec 6;11(101):20140537. doi: 10.1098/rsif.2014.0537.
Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction-diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in 'morphosynthesis' of complex inorganic constructs. In the future, cellular construction is probably key to instruct building of ultimate biomimetic hierarchies with a totality of functions.
材料化学正在对再生科学产生根本性影响,为组织发育提供了许多平台。然而,令人惊讶的是,能够精确模拟组织结构织物的结构和功能或促进忠实组织重建的替代物却非常匮乏。仿生材料化学方法在复制无细胞矿化组织(牙本质、牙釉质和骨骼)的形态、结构和功能构建块方面显示出了前景,或者可用于通过整合细胞群体使其完全再生。仿生材料化学涵盖晶体形成以及晶体在有机模板上矿化形成无机结构这两个过程。本综述将回顾仿生材料化学在再生医学方面取得的成功,包括能够促进体内骨形成的球石藻模拟物。对生物矿化在整个进化过程中的深入了解,为仿生材料化学家提供了构建再生框架最有效技术的信息,例如通过利用液晶(LCs)和复杂的自组织介质来举例说明。因此,一个新的创新方向是创建进行反应 - 扩散交换作为构建复杂仿生无机结构基础的化学环境。这在生物学中已广泛发展,液晶也是如此,它们在结构生物材料的图案形成中作为自组织模板。例如,一项研究被重点提及,其中由噬菌体制成的人工合成手性液晶被转化为牙釉质的忠实复制品。虽然基于化学的策略在创建新的仿生结构方面极具前景,但能够产生的复杂程度存在限制。因此,在复杂无机构建体的“形态合成”中引入活细胞或人工细胞可能有充分的理由。未来,细胞构建可能是构建具有全部功能的最终仿生层次结构的关键。